Unlike the conventional three-phase PMSG, the five-phase PMSG has a higher power density. This paper presents a lumped parameter thermal model of Five-Phase Permanent Magnet Synchronous Generator (FP-PMSG) for small-scale Wind Energy Conversion (WEC) system. The purpose of this thermal analysis is to use it for the optimal selection of various materials required for development of FP-PMSG. Two methods, namely Finite Element Method (FEM) and Lumped Parameter Model (LPM) applied here for the thermal analysis. The FEM results are more accurate, but time consuming where as LPM provides results in less time. Eight different nodes corresponding to critical parts of the machine are considered in LPM to estimate the temperature of stator yoke, winding, magnet, rotor yoke and shaft under natural cooling. The predicted LPM results are found in good agreement with the simulated FEM, based on which specific materials are identified for various sections of FP-PMSG.
The proposed model was build with an aim to maintain constant output torque at a set-point irrespective of varying Wind speed. First a Wind turbine emulator for a Low Power Horizontal Axis Wind turbine using DC Motor was build in Matlab /Simulink then the strategy control was achieved by using Pitch angle control technique which comprises of an Integral controller and a switch .The output torque of the Wind turbine was fed to DC motor whose armature current was controlled by using a PI Controller.The Simulated result demonstrated a constant DC motor speed, armaturé Current ,armature Voltage at all permissible wind speed of the wind turbine. The developed system can be used to build a Wind Power Generation System.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.