Abstract:The healthcare environment is generally perceived as being 'information rich' yet 'knowledge poor'. There is a wealth of data available within the healthcare systems. However, there is a lack of effective analysis tools to discover hidden relationships and trends in data. Knowledge discovery and data mining have found numerous applications in business and scientific domain. Valuable knowledge can be discovered from application of data mining techniques in healthcare system. In this study, we briefly examine the potential use of classification based data mining techniques such as Rule based, decision tree and Artificial Neural Network to massive volume of healthcare data. In particular we consider a case study using classification techniques on a medical data set of diabetic patients.
Medical data mining has great potential for exploring the hidden patterns in the data sets of the medical domain. These patterns can be utilized for clinical diagnosis. However, the available raw medical data are widely distributed, heterogeneous in nature, and voluminous. These data need to be collected in an organized form. This collected data can be then integrated to form a hospital information system. Data mining technology provides a user-oriented approach to novel and hidden patterns in the data. Data mining and statistics both strive towards discovering patterns and structures in data. Statistics deals with heterogeneous numbers only, whereas data mining deals with heterogeneous fields. We identify a few areas of healthcare where these techniques can be applied to healthcare databases for knowledge discovery. In this paper we briefly examine the impact of data mining techniques, including artificial neural networks, on medical diagnostics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.