This work presents a novel route for utilizing waste from power plants to create a new power source (solar cells). Bottom ash (BA) ceramic micro-particles were studied to improve an electrocatalytic activity in solar cell applications for the first time. In the counter electrodes (CE) of dye-sensitized solar cells (DSSC), bottom ash was mixed with PEDOT:PSS (PP) and polyvinylpyrrolidone (PVP) (BA/PP/PVP) in volume ratios of 3:7, 4:6, 5:5, and 6:4. We found that bottom ash has a significant impact in improving the electrocatalytic activity and DSSC efficiency of these cells. Moreover, the PP and PVP ratios have a high impact on solar cell performance. The BA/PP/PVP-(6:4) counter electrode attained a higher DSSC efficiency, 2.70%, compared to the other electrodes prepared under similar conditions and a Pt CE based DSSC (3.23%) at AM 1.5 (100 mWcm-2). The influences of bottom ash and PP/PVP ratios on film structure, electrocatalytic activity in reduction, redox reaction rate, and electron transport were characterized using scanning electron micros copy, cyclic voltammetry, Tafel, and, electrical impedance spectroscopy, respectively. The results show that low-cost BA/PP/PVP-(6:4) CE is a promising new alternative to Pt CEs in DSSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.