Staphylococcus spp. is a major cause of nosocomial infection and sepsis. However, increasing drug resistance is becoming a challenge to microbiologists. The purpose of this study was to identify and determine antimicrobial resistance phenotypes and drug resistance genes of clinical coagulase-negative staphylococci (CoNS) isolates at Mae Sot Hospital in Tak province, Thailand. A total of 229 CoNS isolates were collected from clinical specimens during two periods in 2014 and in 2015. Staphylococcus haemolyticus was the most prevalent species (37.55%), followed by S. epidermidis (21.83%), S. saprophyticus (11.79%) and S. hominis (11.35%) respectively. The remaining 17.48% of the organisms comprised S. capitis, S. arlettae, S. cohnii, S. equorum, S. xylosus, S. warneri, S. sciuri, S. pettenkoferi, S. kloosii and S. lugdunensis. Methicillin-resistant CoNS (MRCoNS), containing the mecA gene, were detected in 145 of 229 isolates, mostly found in S. haemolyticus and S. epidermidis. In addition, the differentiation of their macrolide–lincosamide–streptogramin B (MLSB) resistance phenotypes was determined by the D-test and corresponding resistance genes. Among 125 erythromycin-resistant CoNS, the prevalence of constitutive type of MLSB, inducible clindamycin resistance and macrolide–streptogramin B resistance phenotypes were 72, 13.60 and 14.40% respectively. These phenotypes were expressed in 80% of MRCoNS strains. In addition, the ermC gene (79.20%) was found to be more prevalent than the ermA gene (22.40%), especially among MRCoNS. These results indicate that CoNS may play an important role in spreading of drug resistance genes. More attention to these organisms in surveillance and monitoring programs is needed.
N-linked glycosylation at specific sites on human immunodeficiency virus (HIV)--1 gp120 envelope glycoprotein is believed to act as a glycan shield to protect the viral neutralizing epitopes. Various glycosylation sites have been shown to affect the sensitivity to antibody-mediated neutralization. These include sites on V1V2, C2, base of V3, V5 and C5. Among these, the sites around the base of V3 loop have been most consistently found to associate with neutralization sensitivity in subtype B viruses. In contrast, we found that N-linked glycosylation sites at the junction of V2--C2 and in the middle of C2 were responsible for the neutralization resistance in CRF01_A/E, whereas sites at the base of V3 loop and in V1 and V5 did not affect the neutralization phenotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.