Extracellular vesicles derived from mesenchymal stem cells (MSCs) represent a novel approach for regenerative and immunosuppressive therapy. Recently, cytochalasin B-induced microvesicles (CIMVs) were shown to be effective drug delivery mediators. However, little is known about their immunological properties. We propose that the immunophenotype and molecular composition of these vesicles could contribute to the therapeutic efficacy of CIMVs. To address this issue, CIMVs were generated from murine MSC (CIMVs-MSCs) and their cytokine content and surface marker expression determined. For the first time, we show that CIMVs-MSCs retain parental MSCs phenotype (Sca-1+, CD49e+, CD44+, CD45−). Also, CIMVs-MSCs contained a cytokine repertoire reflective of the parental MSCs, including IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12(p40), IL-13, IL-17, CCL2, CCL3, CCL4, CCL5, CCL11, G-CSF, GM-CSF and TNF-α. Next, we evaluated the immune-modulating properties of CIMVs-MSCs in vivo using standard preclinical tests. MSCs and CIMVs-MSCs reduced serum levels of anti-sheep red blood cell antibody and have limited effects on neutrophil and peritoneal macrophage activity. We compared the immunomodulatory effect of MSCs, CIMVs and EVs. We observed no immunosuppression in mice pretreated with natural EVs, whereas MSCs and CIMVs-MSCs suppressed antibody production in vivo. Additionally, we have investigated the biodistribution of CIMVs-MSCs in vivo and demonstrated that CIMVs-MSCs localized in liver, lung, brain, heart, spleen and kidneys 48 h after intravenous injection and can be detected 14 days after subcutaneous and intramuscular injection. Collectively our data demonstrates immunomodulatory efficacy of CIMVs and supports their further preclinical testing as an effective therapeutic delivery modality.
Extracellular vesicles (EV) represent a promising vector system for biomolecules and drug delivery due to their natural origin and participation in intercellular communication. As the quantity of EVs is limited, it was proposed to induce the release of membrane vesicles from the surface of human cells by treatment with cytochalasin B. Cytochalasin B-induced membrane vesicles (CIMVs) were successfully tested as a vector for delivery of dye, nanoparticles, and a chemotherapeutic. However, it remained unclear whether CIMVs possess fusion specificity with target cells and thus might be used for more targeted delivery of therapeutics. To answer this question, CIMVs were obtained from human prostate cancer PC3 cells. The diameter of obtained CIMVs was 962,13 ± 140,6 nm. We found that there is no statistically significant preference in PC3 CIMVs fusion with target cells of the same type. According to our observations, the greatest impact on CIMVs entry into target cells is by the heterophilic interaction of CIMV membrane receptors with the surface proteins of target cells.
Extracellular vesicles (EVs) are promising therapeutic instruments and vectors for therapeutics delivery. In order to increase the yield of EVs, a method of inducing EVs release using cytochalasin B is being actively developed. In this work, we compared the yield of naturally occurring extracellular vesicles and cytochalasin B-induced membrane vesicles (CIMVs) from mesenchymal stem cells (MSCs). In order to maintain accuracy in the comparative analysis, the same culture was used for the isolation of EVs and CIMVs: conditioned medium was used for EVs isolation and cells were harvested for CIMVs production. The pellets obtained after centrifugation 2300× g, 10,000× g and 100,000× g were analyzed using scanning electron microscopy analysis (SEM), flow cytometry, the bicinchoninic acid assay, dynamic light scattering (DLS), and nanoparticle tracking analysis (NTA). We found that the use of cytochalasin B treatment and vortexing resulted in the production of a more homogeneous population of membrane vesicles with a median diameter greater than that of EVs. We found that EVs-like particles remained in the FBS, despite overnight ultracentrifugation, which introduced a significant inaccuracy in the calculation of the EVs yield. Therefore, we cultivated cells in a serum-free medium for the subsequent isolation of EVs. We observed that the number of CIMVs significantly exceeded the number of EVs after each step of centrifugation (2300× g, 10,000× g and 100,000× g) by up to 5, 9, and 20 times, respectively.
Highlights Cytochalasin B induced membrane vesicles are a promising tool for clinical application in regenerative medicine and antitumor therapy. Storage temperature is an important factor in maintaining the integrity and delivery potential of cytochalasin B induced membrane vesicles. Freezing at -20 °C in saline is optimal method of cytochalasin B induced membrane vesicles storage. The use of cryoprotectants may help to solve the problem of the aggregation of cytochalasin B induced membrane vesicles during freeze drying.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.