In this investigation, computational multibody system (MBS) algorithms are used to develop detailed railroad vehicle models for the prediction of the wear resulting from the pantograph/catenary dynamic interaction. The wear is predicted using MBS algorithms for different motion scenarios that include constant-speed curve negotiation and acceleration and deceleration on a tangent (straight) track. The effect of the vehicle vibration in these different motion scenarios on the contact force is further used to study the wear rates of the contact wire. The wear model used in this investigation accounts for the electrical and the mechanical effects. The nonlinear finite element (FE) absolute nodal coordinate formulation (ANCF), which is suitable for implementation in MBS algorithms, is used to model the flexible catenary system, thereby eliminating the need for using incremental-rotation procedures and co-simulation techniques. In order to obtain efficient solutions, both the overhead contact line and the messenger wire are modeled using the gradient-deficient ANCF cable element. The pantograph/catenary elastic contact formulation employed in this study allows for separation between the pantograph panhead and the contact wire, and accounts for the effect of friction due to the sliding between the pantograph panhead and the catenary cable. The approach proposed in this investigation can be used to evaluate the electrical contact resistance, contribution of the arcing resulting from the panhead/catenary separation, mechanical and electrical wear contributions, and the effect of the pantograph mechanism uplift force on the wear rate. Numerical results are presented and analyzed to examine the wear rates for different motion scenarios.
In this study, a multibody system (MBS) computational framework is developed to determine the exact location of the contact point and wear prediction resulting from the pantograph–catenary interaction. The railroad vehicle models in the MBS computational framework comprise rigid-body railroad vehicles, rigid-body pantograph systems, and flexible catenary systems. To avoid the incremental rotation and cosimulation processes, the nonlinear finite element absolute nodal coordinate formulation is used to model a flexible catenary system in the MBS computational framework and to integrate the rigid-body railroad vehicle and the pantograph and flexible catenary systems into the MBS algorithms. The pantograph–catenary interaction is modeled using an elastic contact formulation developed to include the effect of pantograph–catenary separation and sliding contact. The proposed MBS approach evaluates the location of the contact point, contact force, and normal wear rate (NWR) from the mechanical and electrical contributions. In particular, this investigation considers the vibration caused by a crosswind scenario, the numerical result in the case of a steady crosswind scenario, which contains the advantage of the pantograph–catenary aerodynamic design, and the vibration of the catenary system remains significantly after the excitation of steady crosswind. In the case of steady crosswind, the higher value of the steady crosswind effect significantly increases the mean contact force and NWR from the mechanical contribution. After crosswind load disturbances, the mean contact force decreases but the standard deviation of the contact force increases. Therefore, the NWR from the electrical contribution increases significantly. However, the total NWR increases with the crosswind velocity.
In this study, a multibody system (MBS) computational framework is developed to determine the exact location of the contact point and wear prediction resulting from the pantograph–catenary interaction. The railroad vehicle models in the MBS computational framework comprise rigid-body railroad vehicles, rigid-body pantograph systems, and flexible catenary systems. To avoid the incremental rotation and cosimulation processes, the nonlinear finite element absolute nodal coordinate formulation is used to model a flexible catenary system in the MBS computational framework and to integrate the rigid-body railroad vehicle and the pantograph and flexible catenary systems into the MBS algorithms. The pantograph–catenary interaction is modeled using an elastic contact formulation developed to include the effect of pantograph–catenary separation and sliding contact. The proposed MBS approach evaluates the location of the contact point, contact force, and normal wear rate (NWR) from the mechanical and electrical contributions. In particular, this investigation considers the vibration caused by a crosswind scenario, the numerical result in the case of a steady crosswind scenario, which contains the advantage of the pantograph–catenary aerodynamic design, and the vibration of the catenary system remains significant after the excitation of steady crosswind. In the case of a steady crosswind, the higher value of the steady crosswind effect significantly increases the mean contact force and NWR from the mechanical contribution. After crosswind load disturbances, the mean contact force decreases, but the standard deviation of the contact force increases. Therefore, the NWR from the electrical contribution increases significantly. However, the total NWR increases with the crosswind velocity.
In this investigation, computational multibody systems (MBS) algorithms are used to develop detailed railroad vehicle models for the prediction of the wear resulting from the pantograph/catenary dynamic interaction. The catenary wear is predicted for different motion scenarios that include constant-speed curve negotiation, and acceleration and deceleration on a tangent (straight) track. The effect of the vehicle vibration in these different motion scenarios on the contact force is further used to study the wear rates of the contact wire. The wear model used in this investigation accounts for the electrical and the mechanical effects. The nonlinear finite element (FE) absolute nodal coordinate formulation (ANCF), which is suitable for implementation in MBS algorithms, is used to model the flexible catenary system, thereby eliminating the need for using incremental rotation procedures and co-simulation techniques. The pantograph/catenary elastic contact formulation employed in this study allows for separation between the pantograph pan-head and the contact wire, and accounts for the effect of friction due to the sliding between the pantograph pan-head and the catenary cable. The approach proposed in this investigation can be used to evaluate the electrical contact resistance, contribution of the arcing resulting from the pan-head/catenary separation, mechanical and electrical wear contributions, and effect of the pantograph mechanism uplift force on the wear rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.