Platinum catalysts supported on the potassium-form of different large-pore zeolites (i.e. K-LTL, K-BEA, K-MAZ, and K-FAU) have been tested for n-octane aromatization at 500°C. All catalysts were prepared by the vapor phase impregnation (VPI) method. It was found that the Pt/K-LTL catalyst exhibit a better aromatization performance than the other zeolite catalysts. However, due to secondary hydrogenolysis, the C8 aromatics produced inside the zeolite are converted to benzene and toluene. By contrast, a non-microporous Pt/SiO 2 catalyst did not present the secondary hydrogenolysis. Therefore, despite a lower initial aromatization activity, Pt/SiO 2 results in higher selectivity to C8 aromatics than any of the other zeolite catalysts. All fresh catalysts were characterized by hydrogen chemisorption and FT-IR of adsorbed CO. In addition, the residual acidity of the supports was analyzed by temperature programmed desorption (TPD) of ammonia. In agreement with previous studies, it was found that after reduction at either 350 or 500°C, the Pt/K-LTL showed much higher Pt dispersion than other catalysts. It is known that the structure of L zeolite can stabilize the small Pt clusters inside the zeolite channel. By contrast, FT-IR indicated that a large fraction of platinum clusters were located outside the zeolite channels in the case of Pt/K-BEA and Pt/K-MAZ catalysts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.