Fast pyrolysis with three typical modified zeolite catalysts was evaluated to produce bio-oil from Jatropha waste. Jatropha waste was pyrolyzed in a stainless-steel reactor at 600 under N2 gas flow. The aromatic hydrocarbon selectivity in the bio-oil was in the order: PtPd/ZSM(30) (73.7 %) PtPd/Beta(22.5) (68.6 %) PtPd/USY(20) (48.7 %), where the weight ratio of Jatropha/catalyst was 1. In addition, catalyst regeneration was carried out to study the catalyst efficiency. The analysis of fresh and regenerated catalysts by XRD, NH3-TPD, and TG/DTG, as well as product selectivity and surface properties showed that coke deposition and removal were associated with the zeolite structure and surface acid property. Due to pore size regulation, H-ZSM-5 with 10-membered ring (10 MR) could promote the pyrolysis reaction on the outside surface rather than in the inside channels. In USY zeolite with 12 MR, the reaction could occur inside the channels, but the moderate acid nature resulted in only slightly developed coke formation, which could be removed, at least partly, after regeneration. In beta zeolite with 12 MR, the total amount of surface acidity was more than twice that of USY, which undergoes more condensed coke formation, and was more difficult to remove by regeneration than the coke over USY. Thus, under these pyrolysis conditions, PtPd/ZSM(30) seems to be a better candidate for pyrolysis of Jatropha waste compared to PtPd/Beta(22.5) and PtPd/USY(20).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.