The long-lived fission product 126Sn is of substantial interest in the context of nuclear waste disposal in deep underground repositories. However, the prevalent redox state, the aqueous speciation as well as the reactions at the mineral-water interface under the expected anoxic and reducing conditions are a matter of debate. We therefore investigated the reaction of Sn(II) with a relevant redox-reactive mineral, magnetite (Fe(II)Fe(III)2O4) at <2 ppmv O2, and monitored Sn uptake as a function of pH and time. Tin redox state and local structure were investigated by Sn–K X-ray absorption spectroscopy (XAS). We observed a rapid uptake (<30 min) and oxidation of Sn(II) to Sn(IV) by magnetite. The local structure determined by XAS showed two Sn–Fe distances of about 3.15 and 3.60 Å in line with edge and corner sharing arrangements between octahedrally coordinated Sn(IV) and the magnetite surface, indicative of formation of tetradentate inner-sphere complexes between pH 3 and 9. Based on the EXAFS-derived surface structure, we could successfully model the sorption data with two different complexes, (Magn_sO)4Sn(IV)(OH)2–2 (logK(2,0)(–2) −14.97 ± 0.35) prevailing from pH 2 to 9, and (Magn_sO)4Sn(IV)(OH)2Fe (logK(2,1)(0) −17.72 ± 0.50), which forms at pH > 9 by coadsorption of Fe(II), thereby increasing sorption at this high pH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.