The aim of this study was to evaluate the adaptability and stability of 29 commercial maize hybrids in the southeast of the State of Minas Gerais, Brazil, employing three methods. The 29 commercial maize hybrids from the 2014/2015 crop were evaluated for grain yield in five locations in the southeast of Minas Gerais. A randomised-block design was used, with two replications. Each lot comprised two rows, five meters in length, at a spacing of 0.80 m, giving an effective area of 8.00 m2. In addition to individual and combined variance analysis, the methods of Eberhart & Russell (1966), AMMI (Additive Main Effects and Multiplicative Interaction Analysis) and mixed models were used to evaluate the adaptability and stability of the 29 hybrids. There was a significant difference (P<0.01) for the effects of hybrid, environment and the hybrid x environment interaction. The majority of the hybrids under evaluation displayed broad adaptability with good stability. It was concluded that the Eberhart & Russell, AMMI and mixed-model methods show similar results in classifying maize hybrids of broad adaptability. There is a difference in indicating hybrids with specific adaptability to favourable and unfavourable environments. Based on the three methods, the hybrids SHS7920PRO, BM709PRO2, BRS1055 and BM650PRO2 show a general adaptability for the environments under evaluation.
Defence from parasites and pathogens involves a cost. Thus, it is expected that organisms use this only at high population densities, where the risk of pathogen transmission may be high, as proposed by the "density-dependent prophylaxis" (DDP) hypothesis. These predictions have been tested in a wide range of insects, both in comparative and experimental studies. We think it pertinent to consider a continuum between solitarious and gregarious living insects, wherein: (1) solitarious insects are those that are constitutively solitary and do not express any phenotypic plasticity, (2) the middle of the continuum is represented by insects that are subject to fluctuations in local density and show a range of facultative and plastic changes; and (3) constitutively gregarious forms live gregariously and show the gregarious phenotype even in the absence of crowding stimuli. We aimed to chart some of the intermediary continuum with an insect that presents solitarious aspects, but that is subject to fluctuations in density. Thus, Anticarsia gemmatalis (Lepidoptera: Noctuidae) larvae reared at higher densities showed changes in coloration, a greater degree of encapsulation, had higher hemocyte densities and were more resistant to Baculovirus anticarsia, but not to Bacillus thuringiensis. Meanwhile, with increased rearing density there was reduced capsule melanization. Hemocyte density was the only variable that did not vary according to larval phenotype. The observed responses were not a continuous function of larval density, but an all-or-nothing response to the presence of a conspecific. As A. gemmatalis is not known for gregarious living, yet shows these density-dependent changes, it thus seems that this plastic phenotypic adjustment may be a broader phenomenon than previously thought.
Improvement in nitrogen-use efficiency (NUE) on maize is among the best strategies to mitigate the problems of poor soil fertility in tropical conditions. The objectives of this study were: i) to quantify the genetic variability for NUE-components and agronomic traits in a set of tropical maize inbred lines; ii) to study the genetic divergence among tropical maize inbred lines under contrasting nitrogen (N) levels; iii) to identify the secondary traits associated with NUE in tropical maize inbred lines; and iv) to identify maize inbred lines efficient in NUE and its components. Sixty-four tropical maize inbred lines were evaluated in the field under low- and high-N conditions for NUE-components and agronomic traits. Genetic variability for NUE-components and agronomic traits was found; lines in eight different groups for each N condition were allocated, and N-efficient inbred lines were identified in different groups. Furthermore, we suggest flowering time traits and kernel number as great secondary traits for selecting tropical maize inbred lines for NUE under both N conditions, and chlorophyll content for selecting for NUE under N stress.
Background The characterization of genetic diversity and population differentiation for maize inbred lines from breeding programs is of great value in assisting breeders in maintaining and potentially increasing the rate of genetic gain. In our study, we characterized a set of 187 tropical maize inbred lines from the public breeding program of the Universidade Federal de Viçosa (UFV) in Brazil based on 18 agronomic traits and 3,083 single nucleotide polymorphisms (SNP) markers to evaluate whether this set of inbred lines represents a panel of tropical maize inbred lines for association mapping analysis and investigate the population structure and patterns of relationships among the inbred lines from UFV for better exploitation in our maize breeding program. Results Our results showed that there was large phenotypic and genotypic variation in the set of tropical maize inbred lines from the UFV maize breeding program. We also found high genetic diversity (GD = 0.34) and low pairwise kinship coefficients among the maize inbred lines (only approximately 4.00 % of the pairwise relative kinship was above 0.50) in the set of inbred lines. The LD decay distance over all ten chromosomes in the entire set of maize lines with r2 = 0.1 was 276,237 kb. Concerning the population structure, our results from the model-based STRUCTURE and principal component analysis methods distinguished the inbred lines into three subpopulations, with high consistency maintained between both results. Additionally, the clustering analysis based on phenotypic and molecular data grouped the inbred lines into 14 and 22 genetic divergence clusters, respectively. Conclusions Our results indicate that the set of tropical maize inbred lines from UFV maize breeding programs can comprise a panel of tropical maize inbred lines suitable for a genome-wide association study to dissect the variation of complex quantitative traits in maize, mainly in tropical environments. In addition, our results will be very useful for assisting us in the assignment of heterotic groups and the selection of the best parental combinations for new breeding crosses, mapping populations, mapping synthetic populations, guiding crosses that target highly heterotic and yielding hybrids, and predicting untested hybrids in the public breeding program UFV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.