Exploring efficiency approaches to solve the problems of decision making under uncertainty is a mainstream direction. This article explores the rough approximation of the uncertainty information with Pythagorean fuzzy information on multi-granularity space over two universes combined with grey relational analysis. Based on grey relational analysis, we present a new approach to calculate the relative degree or the attribute weight with Pythagorean fuzzy set and give a new descriptions for membership degree and nonmembership. Then, this paper proposes a multi-granulation rough sets combined with Pythagorean fuzzy set, including optimistic multi-granulation Pythagorean fuzzy rough set, pessimistic multi-granulation Pythagorean fuzzy rough set and variable precision Pythagorean fuzzy rough set. Several basic properties for the established models are investigated in detail. Meanwhile, we present an approach to solving the multiple-criteria group decision making problems with fuzzy information based on the proposed model. Eventually, a case study of psychological evaluation of health care workers in COVID-19 show the principle of the established model and is utilized to verify the availability. The main contributions have three aspects. The first contribution of an approach of calculating the attribute weight is presented based on Grey Relational Analysis and gives a new perspective for the Pythagorean fuzzy set. Then, this paper proposes a mutli-granulation rough set model with Pythagorean fuzzy set over two universes. Finally, we apply the proposed model to solving the psychological evaluation problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.