With the emergence of tools for extracting CSI data from commercial WiFi devices, CSI-based device-free activity recognition technology has developed rapidly and has been widely used in security monitoring, smart home, medical monitoring, and other fields. However, the existing CSI-based activity recognition algorithms need a large number of training samples to obtain the ideal recognition accuracy. To solve the problem, an attention-based bidirectional LSTM method using multidimensional features (called MF-ABLSTM method) is proposed. In this method, the signal preprocessing and continuous wavelet transform algorithms are used to construct time-frequency matrix, the sample entropy is used to characterize the statistical feature of CSI amplitudes, the energy difference at a fixed time interval is used to characterize the time-domain feature of activities, and the energy distribution of different frequency components is used to characterize the frequency-domain feature of activities. By expanding the training samples with the proposed tensor prediction algorithm, the accurate activity recognition can be realized with only a few samples. A large number of experiments verify the good performance of MF-ABLSTM method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.