The influence of different conditions on the sulfur-capture efficiency during fluidized-bed desulfurization was studied using both experimental and modeling methods. The effects of the temperature (∼1120 or ∼1200 K) and gas atmosphere (90% N2 or 90% CO2) were studied using one limestone type. The CO2 atmosphere increased the degree of conversion compared to traditional air combustion conditions using both calcination–sulfation and direct sulfation methods. The scanning electron microscopy–energy-dispersive spectrometry analysis of spent sorbent particles revealed different sulfation patterns in different conditions. The N2 atmosphere produced a network sulfation or core–shell sulfation structure depending upon the temperature. Direct sulfation produced a core–shell structure with a thicker sulfate layer. A uniform pattern was observed for many particles in the CO2 atmosphere using indirect sulfation. The experimental results were analyzed using a time-dependent one-dimensional particle model that can accommodate simultaneous reactions. The model was used to interpret the test results and to determine the magnitude of reactions and diffusion rates as a function of the radius and time. The development of a Thiele number, conversion curve, and conversion profile during the reactions was used to explain the observed results.
The heat and mass‐transfer phenomena occurring during the calcination of limestone particles was studied by means of modeling. The applicability of two modeling methods for calcination was compared under different conditions. An unsteady numerical particle model with mass, momentum, energy balance, and shrinking core models were chosen for the study. The influence of different phenomena (chemical kinetics, advective and diffusive mass transfer, and heat transfer) in different conditions was evaluated with the aid of dimensionless parameters, and their relative importance was shown in a regime chart. Especially, the significance of advection was studied and its importance in high CO2 concentration was observed. Local temperatures inside the particle were obtained by solving a dynamic energy balance in each particle layer including calcination reaction energy and conduction heat transfer. Noticeable temperature differences between constant ambient conditions and the particle were observed. © 2011 American Institute of Chemical Engineers AIChE J, 58: 2563–2572, 2012
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.