Tumor resistance is a major hurdle to anti-Her2/neu Ab–based cancer therapy. Current strategies to overcome tumor resistance focus on tumor cell–intrinsic resistance. However, the extrinsic mechanisms, especially the tumor microenvironment, also play important roles in modulating the therapeutic response and resistance of the Ab. In this study, we demonstrate that tumor progression is highly associated with TAMs with immune-suppressive M2 phenotypes, and deletion of TAMs markedly enhanced the therapeutic effects of anti-Her2/neu Ab in a HER2/neu-dependent breast cancer cell TUBO model. Tumor local delivery of IL-21 can skew TAM polarization away from the M2 phenotype to a tumor-inhibiting M1 phenotype, which rapidly stimulates T cell responses against tumor and dramatically promotes the therapeutic effect of anti-Her2 Ab. Skewing of TAM polarization by IL-21 relies substantially on direct action of IL-21 on TAMs rather than stimulation of T and NK cells. Thus, our findings identify the abundant TAMs as a major extrinsic barrier for anti-Her2/neu Ab therapy and present a novel approach to combat this extrinsic resistance by tumor local delivery of IL-21 to skew TAM polarization. This study offers a therapeutic strategy to modulate the tumor microenvironment to overcome tumor-extrinsic resistance.
Liver malignancies are among the tumor types that are resistant to immune checkpoint inhibition therapy. Tumor‐associated macrophages (TAMs) are highly enriched and play a major role in inducing immunosuppression in liver malignancies. Herein, CCL2 and CCL5 are screened as two major chemokines responsible for attracting TAM infiltration and inducing their polarization toward cancer‐promoting M2‐phenotype. To reverse this immunosuppressive process, an innovative single‐domain antibody that bispecifically binds and neutralizes CCL2 and CCL5 (BisCCL2/5i) with high potency and specificity is directly evolved. mRNA encoding BisCCL2/5i is encapsulated in a clinically approved lipid nanoparticle platform, resulting in a liver‐homing biomaterial that allows transient yet efficient expression of BisCCL2/5i in the diseased organ in a multiple dosage manner. This BisCCL2/5i mRNA nanoplatform significantly induces the polarization of TAMs toward the antitumoral M1 phenotype and reduces immunosuppression in the tumor microenvironment. The combination of BisCCL2/5i with PD‐1 ligand inhibitor (PD‐Li) achieves long‐term survival in mouse models of primary liver cancer and liver metastasis of colorectal and pancreatic cancers. The work provides an effective bispecific targeting strategy that could broaden the PD‐Li therapy to multiple types of malignancies in the human liver.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.