Background: Understanding how prostheses are used in everyday life is central to the design, provision and evaluation of prosthetic devices and associated services. This paper reviews the scientific literature on methodologies and technologies that have been used to assess the daily use of both upper-and lower-limb prostheses. It discusses the types of studies that have been undertaken, the technologies used to monitor physical activity, the benefits of monitoring daily living and the barriers to long-term monitoring, with particular focus on low-resource settings. Methods: A systematic literature search was conducted in PubMed, Web of Science, Scopus, CINAHL and EMBASE of studies that monitored the activity of prosthesis users during daily-living. Results: Sixty lower-limb studies and 9 upper-limb studies were identified for inclusion in the review. The first studies in the lower-limb field date from the 1990s and the number has increased steadily since the early 2000s. In contrast, the studies in the upper-limb field have only begun to emerge over the past few years. The early lowerlimb studies focused on the development or validation of actimeters, algorithms and/or scores for activity classification. However, most of the recent lower-limb studies used activity monitoring to compare prosthetic components. The lower-limb studies mainly used step-counts as their only measure of activity, focusing on the amount of activity, not the type and quality of movements. In comparison, the small number of upper-limb studies were fairly evenly spread between development of algorithms, comparison of everyday activity to clinical scores, and comparison of different prosthesis user populations. Most upper-limb papers reported the degree of symmetry in activity levels between the arm with the prosthesis and the intact arm. Conclusions: Activity monitoring technology used in conjunction with clinical scores and user feedback, offers significant insights into how prostheses are used and whether they meet the user's requirements. However, the cost, limited battery-life and lack of availability in many countries mean that using sensors to understand the daily use of prostheses and the types of activity being performed has not yet become a feasible standard clinical practice. This review provides recommendations for the research and clinical communities to advance this area for the benefit of prosthesis users.
The Cambodian School of Prosthetics and Orthotics (CSPO) in collaboration with La Trobe University, Australia, has established an upgrade programme from ISPO Category II level to a Bachelor Degree in Prosthetics and Orthotics. One group of students have completed the course and following a review process, a second group are now enrolled. The upgrade curriculum focuses on clinical reasoning and development of learning skills. A survey aimed to investigate the challenges of the programme using long distance education was prepared and data was gathered by questionnaires delivered to the organizer, host, coordinators, lecturers and students of the programme. Eleven subjects from various backgrounds participated in the questionnaire. The questionnaire showed the programme improves the capacity of the clinicians and future educators in Cambodia and the region. The distance education course delivery method was found to be beneficial for the students and allows them to remain in their home country. In addition, there is a cost reduction compared to full-time study in Australia.
Introduction: Plaster casting and manual rectification represent the benchmark prosthetic socket design method. 3D technologies have increasing potential for prosthetic limb design and fabrication, especially for enhancing access to these services in lower and middle income countries (LMICs). However, the community has a responsibility to verify the efficacy of these new digital technologies. This study's objective was to assess the repeatability of plaster casting in vivo, specifically for clinically-relevant residuum shape and landmark capture, and to compare this with three clinically-used 3D scanners. Materials and Methods:A comparative reliability assessment of casting and 3D scanning was conducted in eleven participants with established transtibial amputation. For each participant, two positive moulds were cast by a prosthetist and digitised using a white light 3D surface scanner. Between casts, each participant's residuum was scanned. The deviation between scan volumes, cross-sections and shapes was calculated.Results: 95% of the clinically-relevant socket shape surface area had a deviation between manual casts <2.87mm (S.D. 0.44mm). The average deviation by surface area was 0.18mm (S.D. 1.72mm). The repeatability coefficient of casting was 46.1ml (3.47%) for volume, and 9.6mm (3.53%) for perimeters. For all clinically-meaningful measures, greater reliability was observed for the Omega scanner, and worse for the Sense and iSense scanners, although it was observed that the Sense scanner performance was comparable to casting (95 th percentile shape consistency). Conclusions:This study provides a platform to appraise new clinical shape capture technologies in the context of best practice in manual plaster casting, and starts the conversation of which 3D scanning devices are most appropriate for different types of clinical use. The methods and benchmark results may support prosthetists in acquiring and applying their clinical experience, as part of their continuing professional development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.