Introduction. Nigeria is among the 3 countries in which polio remains endemic. The country made significant efforts to reduce polio transmission but remains challenged by poor-quality campaigns and poor team performance in some areas. This article demonstrates the application of geographic information system technology to track vaccination teams to monitor settlement coverage, reduce the number of missed settlements, and improve team performance.Methods. In each local government area where tracking was conducted, global positioning system–enabled Android phones were given to each team on a daily basis and were used to record team tracks. These tracks were uploaded to a dashboard to show the level of coverage and identify areas missed by the teams.Results. From 2012 to June 2015, tracking covered 119 immunization days. A total of 1149 tracking activities were conducted. Of these, 681 (59%) were implemented in Kano state. There was an improvement in the geographic coverage of settlements and an overall reduction in the number of missed settlements.Conclusions. The tracking of vaccination teams provided significant feedback during polio campaigns and enabled supervisors to evaluate performance of vaccination teams. The reports supported other polio program activities, such as review of microplans and the deployment of other interventions, for increasing population immunity in northern Nigeria.
Background. Following the 65th World Health Assembly (WHA) resolution on intensification of the Global Poliomyelitis Eradication Initiative (GPEI), the Nigerian government, with support from the World Health Organization (WHO) and other partners, implemented a number of innovative strategies to curb the transmission of wild poliovirus (WPV) in the country. One of the innovations successfully implemented since mid 2012 is the WHO's engagement of surge capacity personnel.Methods. The WHO reorganized its functional structure, adopted a transparent recruitment and deployment process, provided focused technical and management training, and applied systematic accountability framework to successfully manage the surge capacity project in close collaboration with the national counterparts and partners. The deployment of the surge capacity personnel was guided by operational and technical requirement analysis.Results. Over 2200 personnel were engaged, of whom 92% were strategically deployed in 11 states classified as high risk on the basis of epidemiological risk analysis and compromised security. These additional personnel were directly engaged in efforts aimed at improving the performance of polio surveillance, vaccination campaigns, increased routine immunization outreach sessions, and strengthening partnership with key stakeholders at the operational level, including community-based organizations.Discussion. Programmatic interventions were sustained in states in which security was compromised and the risk of polio was high, partly owing to the presence of the surge capacity personnel, who are engaged from the local community. Since mid-2012, significant programmatic progress was registered in the areas of polio supplementary immunization activities, acute flaccid paralysis surveillance, and routine immunization with the support of the surge capacity personnel. As of 19 June 2015, the last case of WPV was reported on 24 July 2014. The surge infrastructure has also been instrumental in building local capacity; supporting other public health emergencies, such as the Ebola outbreak response and measles and meningitis outbreaks; and strengthening the integrated disease surveillance and response. Due to weak health systems in the country, it is vital to maintain a reasonable level of the surge capacity for successful implementation of the 2013–2018 global polio endgame strategy and beyond.
Introduction Nigeria has adopted the African Regional measles elimination targets and is implementing the recommended strategies. Nigeria provides routine measles vaccination for children aged 9 months. In addition, since 2006, Nigeria has been conducting nationwide measles supplemental Immunisation activities (SIAs) or mass vaccination campaigns every 2 years, and has established measles case-based surveillance. Methods We reviewed routine and supplemental measles immunization coverage data, as well as measles case-based surveillance data from Nigeria for the years 2012 – 2016, in an attempt to determine the country’s progress towards these elimination targets. Results The first dose measles vaccination coverage in Nigeria ranged from 42% and 54% between 2012 and 2015, according to the WHO UNICEF national coverage estimates. Nigeria achieved 84.5% coverage by survey following the 2015 nationwide measles supplemental immunisation activities (SIAs). During this period, the incidence of confirmed measles ranged from 25 - 300 confirmed cases per million population per year, with the Northern States having significantly higher incidence as compared to the Southern States. At the same time, the pattern of confirmed cases indicated a consistent shift in epidemiological susceptibility including older age children. Conclusions In order to accelerate its progress towards the measles elimination targets, Nigeria should build population immunity on a sustainable basis by addressing systemic issues in order to scale up routine immunisation coverage, especially in the Northern half of the country; tailoring the target age for measles SIAs so as to sharply reduce measles incidence in age groups heavily affected by the disease; effectively mobilising resources and improving the quality of planning and coverage outcome of SIAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.