On 11 March 2020, the World Health Organization (WHO) announced Corona Virus Disease (COVID-19), a disease caused by a pathogen called Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), a pandemic. This ongoing pandemic has now been reported in 215 countries with more than 23 million confirmed cases and more than 803 thousand deaths worldwide as of August 22, 2020. Although efforts are undergoing, there is no approved vaccine or any specific antiretroviral drug to treat COVID-19 so far. It is now known that SARS-CoV-2 can affect not only humans but also pets and other domestic and wild animals, making it a one health global problem. Several published scientific evidence has shown that bats are the initial reservoir hosts of SARS-CoV-2, and pangolins are suggested as an intermediate hosts. So far, little is known concerning the role of pets and other animals in the transmission of COVID-19. Therefore, updated knowledge about the potential role of pets in the current outbreak will be of paramount importance for effective prevention and control of the disease. This review summarized the current evidence about the role of pets and other animals in the transmission of COVID-19.
Background: Hematological reference intervals are used for medical decision tools for interpretation of numerical test results. Establishing of hematological interval among newborn babies is very important for the diagnosis of malignancy, anemia, bleeding disorders, and various infections. There are no locally established hematological reference intervals in Ethiopia. Thus, the aim of this study is to establish locally determined hematological reference interval among full-term newborns. Methods: A cross-sectional study was conducted from May 15 to July 30 2019 among 151 apparently healthy fullterm newborns at Gondar University Hospital. About 3 ml of cord blood was obtained for analysis of Hematological parameters and determined by using Sysmex KX-21N (Sysmex Corporation Kobe, Japan) automated analyzer. Median, 2.5th and 97.5th percentile were computed. Result: Male to female ratio was almost equal. All hematological parameter had no statistically significant difference between males and females. The delivery types were not influenced its hematological values. The reference interval of white blood cells, red blood cells, platelets, hemoglobin, hematocrit, mean cell volume, and mean cell hemoglobin were (7.64-22.16) x10 9 /l, (3.69-5.47)x10 12 /l, (132.74-413.4) x10 9 /l, (13.32-19.64) g/dl and (39.42-58.06)%, (91.6-113.22)fl, and (30.48-38.02 pg), respectively. Conclusions: All hematological reference intervals were established from full-term newborns at University of Gondar hospital was different from other studies in Nigeria, Iraq, Pakistan, Nepal, Saudi Arabia and Iran. Therefore, own determined reference value is very important for the clinicians to correctly diagnosis the patients at health facility levels.
disease has led to an extraordinary inclusive health crisis globally. Elevation of D-dimer is the major remarkable abnormal coagulation test in seriously ill COVID-19 patients. In nearly 50% of COVID-19 patients, the value of D-dimer was significantly enhancing. Recent literature indicated that COVID-19 patients were at higher risk of developing disseminated intravascular coagulation. Pro-inflammatory cytokines and chemokines are some of the factors leading to these conditions. The majority of COVID-19 patients showed a higher profile of pro-inflammatory cytokines and chemokines in severe clinical conditions. Tumor necrosis factor-α (TNF-α) and interleukins (ILs) elevated in COVID-19 infected patients. TNF-α, IL-6, and IL-1 are major cytokines vital for the inhibition of intrinsic anticoagulant pathways. COVID-19 becomes a higher complication with a significant effect on blood cell production and hemostasis cascades. Deep vein thrombosis and arterial thrombosis are common complications. Changes in hematological parameters are also frequently observed in COVID-19 patients. Especially, thrombocytopenia is an indicator for poor prognosis of the disease and is highly expected and aggravates the likelihood of death of SARS-CoV-2 infected individuals. Thrombopoiesis reduction in COVID-19 patients might be due to viral abuse of the bone marrow/the viral load may affect thrombopoietin production and function. In other ways, immune-inflammationmediated destruction and increased consumption of platelets are also the possible proposed mechanisms for thrombocytopenia. Therefore, the counting of platelet cells is an easily accessible biomarker for disease monitoring. All SARS-CoV-2 infected patients should be admitted and identifying potential higher-risk patients. It is also obligatory to provide appropriate treatments with intensive care and strict follow-up. In addition, considerations of chronic diseases are essential for better prognosis and recovery. The current review discusses coagulopathy among SARS-CoV-2 infected individuals and its complication for the management of the disease.
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection has rapidly spread across the world since its first emergence in China in late 2019. It is a major public health concern with no effective treatct 3ments. The immunopathology of SARS-CoV-2 is associated with an excessive inflammatory response. Macrophage activation syndrome (MAS) is also associated with the severity of the disease in SARS-CoV-2-infected patients. Neopterin is a macrophage activation marker produced by monocytes and macrophages upon activation by interferon-gamma (IFN-γ). Neopterin is a well-established marker in a variety of diseases, and recent evidence indicates that it could be helpful in early prediction of the severity of COVID-19 disease and serve as a prognostic marker. Here, we outline the role of macrophage activation syndrome in the pathogenesis of SARS-CoV-2 and suggest that neopterin could be used as a biomarker for progression of COVID-19.
The global threat of COVID-19 is continued with no commercially available vaccine or drug yet. While the application of convalescent therapy is usually beneficial, for critically ill patients, the detrimental effect associated with some antibodies is also reported. The immunoglobulin G (IgG) antibody in response to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is described, albeit the lack of defining whether the difference in subclasses has a beneficial or detrimental role. IgG2 has limited ability to activate innate immune cells and complement-mediated inflammation, which have been inversely described in SARS-CoV-2 pathogenesis. The expansion of IgG2 is promoted by interferon γ (IFN-γ); however, there is a low level of IFN-γ in COVID-19 patients. Therefore, this review describes the importance of targeting IgG2, with IFN-γ in minimizing the SARS-CoV-2 associated inflammation, and may provide insight into the design of vaccine or antibody-based therapies to COVID-19 disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.