The study was focused on the preparation and characterizations of sodium periodate-modified nanocellulose (NaIO4-NC) prepared from Eichhornia crassipes for the removal of cationic methylene blue (MB) dye from wastewater (WW). A chemical method was used for the preparation of NaIO4-NC. The prepared NaIO4-NC adsorbent was characterized by using X-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscope (SEM), energy-dispersive X-ray (EDX), and Brunauer–Emmett–Teller (BET) instruments. Next, it was tested to the adsorption of MB dye from WW using batch experiments. The adsorption process was performed using Langmuir and Freundlich isotherm models with maximum adsorption efficiency (qmax) of 90.91 mg·g−1 and percent color removal of 78.1% at optimum 30 mg·L−1, 60 min., 1 g, and 8 values of initial concentration, contact time, adsorbent dose, and solution pH, respectively. Pseudo-second-order (PSO) kinetic model was well fitted for the adsorption of MB dye through the chemisorption process. The adsorption process was spontaneous and feasible from the thermodynamic study because the Gibbs free energy value was negative. After adsorption, the decreased values for physicochemical parameters of WW were observed in addition to the color removal. From the regeneration study, it is possible to conclude that NaIO4-NC adsorbent was recyclable and reused as MB dye adsorption for 13 successive cycles without significant efficient loss.
In this study, both pristine cellulose nanocrystalline (CNC) and maleic anhydride functionalized cellulose nanocrystalline (MA-CNC) were prepared from the stems of Eichhornia crassipes weed by the sulfuric acid hydrolysis method. The as-prepared adsorbents were characterized by using X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and Brunauer–Emmett–Teller (BET) instruments. These materials were applied for the removal of Cd(II) ions from WW. The uptake mechanism was fixed to both Langmuir and Freundlich adsorption isotherms with a maximum Cd(II) ion uptake capability (qmax) of 75.76 and 215.52 mg g−1 by CNC and MA-CNC adsorbents, respectively. Pseudo-second-order (PSO) kinetic model was well fitted to the uptake process. The adsorbent regeneration study was done after desorption of Cd(II) ions from the adsorbent by HCl washing. Results exhibited that the adsorbent was reused for the removal of Cd(II) ions from real WW after successive 13th cycle.
Wastewater (WW) remediation technologies were the most crucial issues all over the world at present time. Thus, the remediation of Cr (VI) ions from real WW was conducted using green biocompatible and biodegradable pristine (CNM) and succinic anhydride functionalized cellulose nanomaterial (S-CNM) adsorbents. Both CNM and S-CNM adsorbents were prepared by using sulfuric acid hydrolysis method and characterized for particle sizes, functional groups, and surface morphologies by using XRD, FT-IR, and SEM instruments, respectively. The physicochemical properties of the collected WW were investigated. Next, both the prepared adsorbents were applied for the remediation of Cr (VI) ions from WW. The remediation processes is spontaneous and have higher remediation efficiencies of Cr (VI) ions from WW. The Cr (VI) ions remediation mechanism was evaluated from both the Cr (VI) ions adsorption isotherms and kinetic concepts. Both Langmuir and Freundlich Cr (VI) ions adsorption isotherm models were certainly fixed to a maximum Cr (VI) ions uptake capability (qmax) of 60.24 and 156.25 mg g−1 by CNM and S-CNM sorbents, respectively, and it follows pseudo-second-order (PSO) kinetics model through chemisorption processes. The Cr (VI) ions uptake capabilities were hindered by the presence of organic matter and any other competing pollutants in the WW. The S-CNM sorbent was selected for the regeneration study due to its higher efficiencies of remediation relative to CNM sorbent and the study was conducted through desorption of Cr (VI) ions by using HCl. Findings have shown that the sorbent was easily recyclable and applicable for the remediation of pollutants from real WW after consecutive 13th cycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.