At the National Synchrotron Radiation Laboratory, The University of Science and Technology of China, an atomic and molecular physics beamline with an energy range of 7.5-124 eV has been constructed for studying the spectroscopy and dynamics of atoms, molecules and clusters. The undulator-based beamline, with a high-resolution spherical-grating monochromator (SGM), is connected to the atomic and molecular physics end-station. This end-station includes a main experimental chamber for photoionization studies and an additional multi-stage photoionization chamber for photoabsorption spectroscopy. A mid-photon flux of 5 x 10(12) photons s(-1) and a high resolving power is provided by this SGM beamline in the energy range 7.5-124 eV. The size of the synchrotron radiation beam spot at the sample is about 0.5 mm in the vertical direction and 1.0 mm in the horizontal direction. Some experimental results of photoionization efficiency spectroscopy and photoabsorption spectroscopy of atoms and molecules are also reported.
The recent mechanistic finding of the hydrogen release pathways from ammonia borane (AB) has sparked new interest in the chemistry and properties of the diammoniate of diborane (DADB), an ionic isomer of AB. We herein report a facile one-step solid-phase synthesis route of DADB using inexpensive starting materials. Our study found that mechanically milling a 1 : 1 NaBH(4)/NH(4)F powder mixture causes the formation of crystalline DADB via a NH(4)BH(4) intermediate. The produced DADB can be readily separated from the sodium fluoride (NaF) by-product by a purification procedure using liquid ammonia at -78 °C. The thermal decomposition behavior of DADB was studied using synchronous thermal analyses, particularly in comparison with AB. It was found that the decomposition steps and products of DADB are similar to those of AB. But meanwhile, DADB exhibits a series of advantages over AB that merit its potential hydrogen storage application, such as lower dehydrogenation temperature, free of foaming and lack of an induction period in the thermal decomposition process. Our study further found that the volatile non-hydrogen products from DADB can be effectively suppressed by milling with MgH(2).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.