In December 2019, an outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) infection occurred in Wuhan, and rapidly spread to worldwide, which has attracted many people's concerns about the patients. However, studies on the infection status of medical personnel is still lacking.
Callose is a β-l,3-glucan with diverse roles in the viral pathogenesis of plants. It is widely believed that the deposition of callose and hypersensitive reaction (HR) are critical defence responses of host plants against viral infection. However, the sequence of these two events and their resistance mechanisms are unclear. By exploiting a point inoculation approach combined with aniline blue staining, immuno-electron microscopy and external sphincters staining with tannic acid, we systematically investigated the possible roles of callose deposition during viral infection in soybean. In the incompatible combination, callose deposition at the plasmodesmata (PD) was clearly visible at the sites of inoculation but viral RNA of coat protein (CP-RNA) was not detected by RT-PCR in the leaf above the inoculated one (the upper leaf). In the compatible combination, however, callose deposition at PD was not detected at the site of infection but the viral CP-RNA was detected by RT-PCR in the upper leaf. We also found that in the incompatible combination the fluorescence due to callose formation at the inoculation point disappeared following the injection of 2-deoxy-D-glucose (DDG, an inhibitor of callose synthesis). At same time, in the incompatible combination, necrosis was observed and the viral CP-RNA was detected by RT-PCR in the upper leaf and HR characteristics were evident at the inoculation sites. These results show that, during the defensive response of soybean to viral infection, callose deposition at PD is mainly responsible for restricting the movement of the virus between cells and it occurs prior to the HR response.
to perform PDT. [7] PSs absorb laser energy in the presence of O 2 to produce cytotoxic reactive oxygen species (ROS) such as singlet oxygen ( 1 O 2 ) that causes the destruction of the genetic material in cancer cells, leading to cell apoptosis, or necrosis. [7][8][9][10] The O 2 involved in PDT improves tumor destruction and reduces the toxic side effects as compared with other conventional therapeutic modalities like radiotherapy, chemotherapy, and surgery. [11][12][13][14][15] However, hypoxia, one of the hallmarks of malignant tumors, [16][17][18] induces an unexpected resistance of tumors to PDT, since molecular O 2 plays an essential role during the process. Some types of nanocatalysts have been used to address this dilemma, such as manganese dioxide (MnO 2 ) nanoparticles, carbon dot, and single-atom ruthenium (Ru) for an in situ catalysis of the decomposition of H 2 O 2 to generate O 2 . [6,14,19] This could be an effective strategy to relieve hypoxia in the tumor microenvironment (TME), thus becoming a potential approach to improve the efficacy of PDT. [20] Additionally, the acidic TME with an excessive amount of H 2 O 2 is a natural activator of these nanocatalysts, making them intelligent nanocatalysts for tumor specific therapy. [21][22][23] Recently, MnO 2 nanostructures have received extensive attention in the field of bio-applications for their efficient O 2 production and easy synthesis, [24][25][26][27] enhancing the effect of radiation therapy, [27] chemotherapy, [28] and PDT. [29] In addition, MnO 2 is rapidly decomposed into water soluble Mn 2+ ion in an acidic condition, [6,[30][31][32][33][34] and excreted through the bile into the feces, avoiding unexpected accumulation and long-term toxicity in vivo. [6,29] However, MnO 2 nanostructures without surface coating have a poor structure stability under physiological conditions, [35] and it is difficult to control their size and morphology during the synthesis, thus, increasing the uncertainty of the reactivity of the nanomaterial. [25] Therefore, it is highly desirable to construct MnO 2 nanoparticles with uniform morphology, high stability and biocompatibility for biomedical applications.Ferritin (Ftn) is an endogenous iron storage protein composed of 24 subunits, with a hollow structure of 12 nm in the external diameter and an inner cavity of 8 nm. [36] Ftn has been widely used as a superior protein nanocage for the Hypoxia is a hallmark of the tumor microenvironment (TME) that promotes tumor development and metastasis. Photodynamic therapy (PDT) is a promising strategy in the treatment of tumors, but it is limited by the lack of oxygen in TME. In this work, an O 2 self-supply PDT system is constructed by co-encapsulation of chlorin e6 (Ce6) and a MnO 2 core in an engineered ferritin (Ftn), generating a nanozyme promoted PDT nanoformula (Ce6/ Ftn@MnO 2 ) for tumor therapy. Ce6/Ftn@MnO 2 exhibits a uniform small size (15.5 nm) and high stability due to the inherent structure of Ftn. The fluorescence imaging and immunofluorescence analysis dem...
Left ventricular hypertrophy is a maladaptive response to pressure overload and an important risk factor for heart failure. Intermedin (IMD), a multi-functional peptide, plays important roles in cardiovascular protection. In this study, we revealed an autophagy-dependent mechanism involved in IMD’s protection against cardiac remodeling and cardiomyocyte death in heart hypertrophy. We observed that transverse aortic contraction (TAC) induction, Ang II or ISO exposure induced remarkable increase in the expression of endogenous IMD and its receptor components, CRLR, RAMP1 and RAMP3, in mouse hearts and H9c2 cell cultures, respectively. Furthermore, the heart size, heart weight/body weight ratios, cardiomyocyte size and apoptosis, interstitial collagen, hypertrophic markers including ANP and BNP expression were also significantly increased, which were effectively suppressed by IMD supplementation. In addition, IMD induced capillary angiogenesis and improved functions in hypertrophic hearts. We further observed that IMD induced strong autophagy in hypertrophic hearts and cultured cells, which was paralleling with the decrease in cardiomyocyte size and apoptosis. Furthermore, an autophagy inhibitor, 3-MA, was used to block the IMD-augmented autophagy level, and then the protection of IMD on cardiomyocyte hypertrophy and apoptosis was almost abrogated. We also observed that IMD supplementation stirred intracellular cAMP production, and augmented the ERK1/2 phosphorylation induced by Ang II/ISO exposure in H9c2 cells. In addition, we inhibited PI3K, PKA and MAPK/ERK1/2 signaling pathways by using wortamannin, H89 and PD98059, respectively, in H9c2 cells co-incubating with both IMD and Ang II or ISO, and observed that these inhibitors effectively reduced IMD-augmented autophagy level, but only H89 and PD98059 pre-incubation abrogated the anti-apoptotic action of IMD. These results indicate that the endogenous IMD and its receptor complexes are induced in hypertrophic cardiomyocytes and proposed to play an important role in the pathogenesis of cardiac hypertrophy, and the autophagy stirred by IMD supplementation is involved in its protection against cardiomyocyte hypertrophy and apoptosis through the activation of both cAMP/PKA and MAPK/ERK1/2 pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.