Previous AFM experiments on surface nanobubbles have suggested an anomalously large contact angle theta of the bubbles (typically approximately 160 degrees measured through the water) and a possible size dependence theta(R). Here we determine theta(R) for nanobubbles on smooth, highly oriented pyrolytic graphite (HOPG) with a variety of different cantilevers. It is found that theta(R) is constant within experimental error, down to bubbles as small as R = 20 nm, and is equal to 119 +/- 4 degrees . This result, which is the lowest contact angle for surface nanobubbles found so far, is very reproducible and independent of the cantilever type used, provided that the cantilever is clean and the HOPG surface is smooth. In contrast, we find that, for a particular set of cantilevers, the surface can become relatively rough because of precipitated matter from the cantilever onto the substrate, in which case larger nanoscopic contact angles ( approximately 150 degrees ) show up. In addition, we address the issue of the set-point dependence. Once the set-point ratio is below roughly 95%, the obtained nanobubble shape changes and depends on both nanobubble size and cantilever properties (spring constant, material, and shape).
We determine conservative and dissipative tip-sample interaction forces from the amplitude and phase response of acoustically driven atomic force microscope (AFM) cantilevers using a non-polar model fluid (octamethylcyclotetrasiloxane, which displays strong molecular layering) and atomically flat surfaces of highly ordered pyrolytic graphite. Taking into account the base motion and the frequency-dependent added mass and hydrodynamic damping on the AFM cantilever, we develop a reliable force inversion procedure that allows for extracting tip-sample interaction forces for a wide range of drive frequencies. We systematically eliminate the effect of finite drive amplitudes. Dissipative tip-sample forces are consistent with the bulk viscosity down to a thickness of 2-3 nm. Dissipation measurements far below resonance, which we argue to be the most reliable, indicate the presence of peaks in the damping, corresponding to an enhanced 'effective' viscosity, upon expelling the last and second-last molecular layer.
Polymer brushes lead to small friction and wear and thus hold great potential for industrial applications. However, interdigitation of opposing brushes makes them prone to damage. Here we report molecular dynamics simulations revealing that immiscible brush systems can form slick interfaces, in which interdigitation is eliminated and dissipation strongly reduced. We test our findings with friction force microscopy experiments on hydrophilic and hydrophobic brush systems in both symmetric and asymmetric setups. In the symmetric setup both brushes are chemically alike, while the asymmetric system consists of two different brushes that each prefer their own solvent. The trends observed in the experimentally measured force traces and the friction reduction are similar to the simulations and extend to fully immersed contacts. These results reveal that two immiscible brush systems in mechanical contact slide at a fluid-fluid interface while having load-bearing ability. This makes them ideal candidates for tribological applications.
While polymer brushes in contact with liquids have been researched intensively, the characteristics of brushes in equilibrium with vapors have been largely unexplored, despite their relevance for many applications, including sensors and smart adhesives. Here, we use molecular dynamics simulations to show that solvent and polymer density distributions for brushes exposed to vapors are qualitatively different from those of brushes exposed to liquids. Polymer density profiles for vapor-solvated brushes decay more sharply than for liquid-solvated brushes. Moreover, adsorption layers of enhanced solvent density are formed at the brush–vapor interface. Interestingly and despite all of these effects, we find that solvent sorption in the brush is described rather well with a simple mean-field Flory–Huggins model that incorporates an entropic penalty for stretching of the brush polymers, provided that parameters such as the polymer–solvent interaction parameter, grafting density, and relative vapor pressure are varied individually.
For several decades, high-density, end-tethered polymers, forming so-called polymer brushes, have inspired scientists to understand their properties and to translate them to applications. While earlier research focused on polymer brushes in liquids, it was recently recognized that these brushes can find application in air as well. In this review, we report on recent progress in unraveling fundamental concepts of brushes in air, such as their vapor-swelling and solvent partitioning. Moreover, we provide an overview of the plethora of applications in air (e.g., in sensing, separations or smart adhesives) where brushes can be key components. To conclude, we provide an outlook by identifying open questions and issues that, when solved, will pave the way for the large scale application of brushes in air.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.