Organismal movement is ubiquitous and facilitates important ecological mechanisms that drive community and metacommunity composition and hence biodiversity. In most existing ecological theories and models in biodiversity research, movement is represented simplistically, ignoring the behavioural basis of movement and consequently the variation in behaviour at species and individual levels. However, as human endeavours modify climate and land use, the behavioural processes of organisms in response to these changes, including movement, become critical to understanding the resulting biodiversity loss. Here, we draw together research from different subdisciplines in ecology to understand the impact of individual‐level movement processes on community‐level patterns in species composition and coexistence. We join the movement ecology framework with the key concepts from metacommunity theory, community assembly and modern coexistence theory using the idea of micro–macro links, where various aspects of emergent movement behaviour scale up to local and regional patterns in species mobility and mobile‐link‐generated patterns in abiotic and biotic environmental conditions. These in turn influence both individual movement and, at ecological timescales, mechanisms such as dispersal limitation, environmental filtering, and niche partitioning. We conclude by highlighting challenges to and promising future avenues for data generation, data analysis and complementary modelling approaches and provide a brief outlook on how a new behaviour‐based view on movement becomes important in understanding the responses of communities under ongoing environmental change.
Pollination syndromes and their predictive power regarding actual plant-animal interactions have been controversially discussed in the past. We investigate pollination syndromes in Balsaminaceae, utilizing quantitative respectively categorical data sets of flower morphometry, signal and reward traits for 86 species to test for the effect of different types of data on the test patterns retrieved. Cluster Analyses of the floral traits are used in combination with independent pollinator observations. Based on quantitative data we retrieve seven clusters, six of them corresponding to plausible pollination syndromes and one additional, well-supported cluster comprising highly divergent floral architectures. This latter cluster represents a non-syndrome of flowers not segregated by the specific data set here used. Conversely, using categorical data we obtained only a rudimentary resolution of pollination syndromes, in line with several earlier studies. The results underscore that the use of functional, exactly quanitified trait data has the power to retrieve pollination syndromes circumscribed by the specific data used. Data quality can, however, not be replaced by sheer data volume. With this caveat, it is possible to identify pollination syndromes from large datasets and to reliably extrapolate them for taxa for which direct observations are unavailable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.