The recent successes of immunotherapy have shifted the paradigm in cancer treatment but since only a percentage of patients respond, it is imperative to identify factors impacting outcome. Obesity is reaching pandemic proportions and is a major risk factor for certain malignancies, but the impact of obesity on immune responses, in general, and in cancer immunotherapy, in particular, is poorly understood. Here we demonstrate, across multiple species and tumor models, that obesity results in increased immune aging, tumor progression and PD-1-mediated T cell dysfunction which is driven, at least in part, by leptin. Strikingly however, obesity is also associated with increased efficacy of PD-1/PD-L1 blockade in both tumor-bearing mice and clinical cancer patients. These findings advance our understanding of obesity-induced immune dysfunction and its consequences in cancer and highlight obesity as a biomarker for some cancer immunotherapies. These data indicate a paradoxical impact of obesity on cancer. There is heightened immune dysfunction and tumor progression but also greater anti-tumor efficacy and survival following checkpoint blockade which directly targets some of the pathways activated in obesity.
Despite recent major clinical breakthroughs in human cancer immunotherapy including the use of checkpoint inhibitors and engineered T cells, important challenges remain, including determining the sub-populations of patients who will respond and who will experience at times significant toxicities. Although advances in cancer immunotherapy depend on preclinical testing, the majority of in-vivo testing currently relies on genetically identical inbred mouse models which, while offering critical insights regarding efficacy and mechanism of action, also vastly underrepresent the heterogeneity and complex interplay of human immune cells and cancers. Additionally, laboratory mice uncommonly develop spontaneous tumors, are housed under specific-pathogen free conditions which markedly impacts immune development, and incompletely model key aspects of the tumor/immune microenvironment. The canine model represents a powerful tool in cancer immunotherapy research as an important link between murine models and human clinical studies. Dogs represent an attractive outbred combination of companion animals that experience spontaneous cancer development in the setting of an intact immune system. This allows for study of complex immune interactions during the course of treatment while also directly addressing long-term efficacy and toxicity of cancer immunotherapies. However, immune dissection requires access to robust and validated immune assays and reagents as well as appropriate numbers for statistical evaluation. Canine studies will need further optimization of these important mechanistic tools for this model to fulfill its promise as a model for immunotherapy. This review aims to discuss the canine model in the context of existing preclinical cancer immunotherapy models to evaluate both its advantages and limitations, as well as highlighting its growth as a powerful tool in the burgeoning field of both human and veterinary immunotherapy.
Paraneoplastic hypertrophic osteopathy (pHO) is known to occur in both canine and human cancer patients. While the pathology of pHO is well-described in the dog, very little information exists regarding the true clinical presentation of dogs affected with pHO. The primary objective of this study was to provide a more comprehensive clinical picture of pHO. To this end, we retrospectively identified 30 dogs and recorded data regarding presenting complaints and physical examination (PE) findings on the date of pHO diagnosis. As a secondary objective, any blood test results were also collected from the computerized records. The most common clinical signs included leg swelling, ocular discharge and/or episcleral injection, lameness, and lethargy. The most common haematological and serum biochemical abnormalities included anaemia, neutrophilia and elevated alkaline phosphatase. In addition to presenting a more detailed clinical description of pHO in the dog, these data support the previously described haematological, serum biochemical and PE abnormalities published in individual case reports.
Immunotherapeutic strategies have shown promise for the treatment of canine osteosarcoma (cOSA). Very little is known about the immune microenvironment within cOSA, however, limiting our ability to identify potential immune targets and biomarkers of therapeutic response. We therefore prospectively assessed the disease-free interval (DFI) and overall survival time (ST) of 30 dogs with cOSA treated with amputation and six doses of adjuvant carboplatin. We then quantified lymphocytic (CD3+, FOXP3+) and macrophage (CD204+) infiltrates within the primary tumours of this cohort using immunohistochemistry, and evaluated their association with outcome. Overall, the median DFI and ST were 392 and 455 days, respectively. The median number of CD3+ and FOXP3+ infiltrates were 45.8 cells/mm (4.6-607.6 cells/mm ) and 8.5 mm (0-163.1 cells/mm ), respectively. The median area of CD204+ macrophages was 4.7% (1.3%-23.3%), and dogs with tumours containing greater than 4.7% CD204+ macrophages experienced a significantly longer DFI (P = 0.016). Interestingly, a significantly lower percentage of CD204+ macrophages was detected in cOSA arising from the proximal humerus compared to other appendicular bone locations (P = 0.016). Lymphocytic infiltrates did not appear to correlate with outcome in cOSA. Overall, our findings suggest that macrophages may play a role in inhibiting cOSA progression, as has been suggested in human osteosarcoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.