Floods are natural disasters that can damage lives, property, and the economy. Therefore, it is necessary to have a reliable and accurate flood forecasting system to provide early warning in time. Although several Mathematical models have been developed and used to forecast floods continuously for decades, most require up-to-date and specific physical data, including a high experience user, to provide and interpret the result. It is an obstacle for use in remote areas with incomplete information and a lack of specialists. This study, therefore, developed a real-time flood forecasting system with Machine Learning by applying a 2-variable sliding window technique to restructure the data, which can solve the problem of data limitation. Thung Song District Nakhon Si Thammarat Province was selected to test this newly developed model. By importing the water level data of two water level observed stations, SWR025 at the upstream and NKO001 at Thung Song Municipality, into five machine learning algorithms (Linear Regression, Support Vector Machine, K-Nearest Neighbor, Decision Tree, and Random Forest) for forecasting the water level every 30 minutes for the next 5 hours. Their performance was compared by the MSE, MAE, and R 2, which ranged from 0.006-0.013, 0.044-0.063, and 0.518-0.750, respectively. The Random Forest was the most efficient algorithm for the 3-hour forecast with an efficiency value of MSE 0.006, MAE 0.044, and R 2 0.75. The developed ML flood forecasting model was validated by the flood data in November 2021 and showed good agreement. Then, the extent of the inundation area was evaluated by the mathematical model. Next, the water depth and surface elevation were transformed and applied to GIS. Finally, the flood risk areas on Google Maps under that specific rainfall are promptly notified to the people three hours before the flood occurs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.