Potential fishing zones for skipjack tuna in the Bone Bay-Flores Sea were investigated from satellite-based oceanography and catch data, using a linear model (generalized linear model) constructed from generalized additive models and geographic information systems. Monthly mean remotely sensed sea surface temperature and surface chlorophyll-a concentration during the southeast monsoon (April-August) were used for the year 2012. The best generalized additive model was selected to assess the effect of marine environment variables (sea surface temperature and chlorophyll-a concentration) on skipjack tuna abundance (catch per unit effort). Then, the appropriate linear model was constructed from the functional relationship of the generalized additive model for generating a robust predictive model. Model selection process for the generalized additive model was based on significance of model terms, decrease in residual deviance, and increase in cumulative variance explained, whereas the model selection for the linear model was based on decrease in residual deviance, reduction in Akaike’s Information Criterion, increasing cumulative variance explained and significance of model terms. The best model was selected to predict skipjack tuna abundance and their spatial distribution patterns over entire study area. A simple linear model was used to verify the predicted values. Results indicated that the distribution pattern of potential fishing zones for skipjack during the southeast monsoon were well characterized by sea surface temperatures ranging from 28.5℃ to 30.5 ℃ and chlorophyll-a ranging from 0.10 to 0.20 mg·m-3. Predicted highest catch per unit efforts were significantly consistent with the fishing data (P < 0.01, R2 = 0.8), suggesting that the oceanographic indicators may correspond well with the potential feeding ground for skipjack tuna. This good feeding opportunity for skipjack was driven the dynamics of upwelling operating within study area which are capable of creating a highly potential fishing zone during the southeast monsoon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.