This research had two main objectives. The first research objective was to make the right design of new product according to customer requirements with the implementation of Quality Function Deployment (QFD) in the tire industry. The second research objective was to enhance competitiveness based on the renewal of marketing strategy and consumer needs, non-explosive prohibition, non-slip tires, no bulgy, and competitive prices. The research was carried out by using costumer satisfaction rating by comparing with the competitor companies. Based on calculation using QFD method, it shows that split liner has the highest percentage of technical requirement in tire industry about 30,57%. The second factor is pattern design about 25,98%. Then, the third factor is compound technology about 22,68%. Therefore, the researchers can recommend several strategies for the quality improvement based on customer needs for the tire industry.
Glass-façade-cleaning robots are an emerging class of service robots. This kind of cleaning robot is designed to operate on vertical surfaces, for which tracking the position and orientation becomes more challenging. In this article, we have presented a glass-façade-cleaning robot, Mantis v2, who can shift from one window panel to another like any other in the market. Due to the complexity of the panel shifting, we proposed and evaluated different methods for estimating its orientation using different kinds of sensors working together on the Robot Operating System (ROS). For this application, we used an onboard Inertial Measurement Unit (IMU), wheel encoders, a beacon-based system, Time-of-Flight (ToF) range sensors, and an external vision sensor (camera) for angular position estimation of the Mantis v2 robot. The external camera is used to monitor the robot’s operation and to track the coordinates of two colored markers attached along the longitudinal axis of the robot to estimate its orientation angle. ToF lidar sensors are attached on both sides of the robot to detect the window frame. ToF sensors are used for calculating the distance to the window frame; differences between beam readings are used to calculate the orientation angle of the robot. Differential drive wheel encoder data are used to estimate the robot’s heading angle on a 2D façade surface. An integrated heading angle estimation is also provided by using simple fusion techniques, i.e., a complementary filter (CF) and 1D Kalman filter (KF) utilizing the IMU sensor’s raw data. The heading angle information provided by different sensory systems is then evaluated in static and dynamic tests against an off-the-shelf attitude and heading reference system (AHRS). It is observed that ToF sensors work effectively from 0 to 30 degrees, beacons have a delay up to five seconds, and the odometry error increases according to the navigation distance due to slippage and/or sliding on the glass. Among all tested orientation sensors and methods, the vision sensor scheme proved to be better, with an orientation angle error of less than 0.8 degrees for this application. The experimental results demonstrate the efficacy of our proposed techniques in this orientation tracking, which has never applied in this specific application of cleaning robots.
Bertambahnya jumlah kendaraan menyebabkan meningkatnya kepadatan lalu lintas yang menjadi salah satu faktor utama penyebab kemacetan. Kepadatan lalu lintas biasanya teralokasi di beberapa titik-titik tertentu di ruas jalan, salah satunya di persimpangan. Saat ini lalu lintas di persimpangan jalan diatur oleh lampu lalu lintas menggunakan sistem prediksi kepadatan lalu lintas. Sistem prediksi ini nantinya akan menentukan lama aktifnya lampu hijau dan lampu merah di setiap persimpangan. Salah satu sistem prediksi yang banyak digunakan adalah metode estimasi stastistik kepadatan kendaraan. Metode lain pengontrolan kepadatan lalu lintas seperti sistem pemantauan secara visual memungkinkan untuk diterapkan guna menambah performansi sistem. Untuk itu penelitian ini mengusulkan pembuatan sebuah sistem pengontrolan lampu lalu lintas secara otomatis dengan prediksi kepadatan kendaraan menggunakan teknik pengolahan citra. Sistem yang dibangun menggunakan kamera untuk memantau kondisi kendaraan di jalan raya. Data gambar yang didapat dari kamera kemudian diolah menggunakan teknik pengolahan citra dan teknik pengurangan citra. Teknik ini membandingkan citra objek dengan citra referensi sehingga dapat diketahui jumlah piksel putih pada citra hasil pengurangan citra. Berdasarkan jumlah piksel putih yang telah diperoleh tersebut dapat diketahui persentase panjang antrian kendaraan dan kepadatan kendaraan. Data persentase yang diperoleh kemudian dikirim ke mikrokontroler untuk mengontrol durasi nyala lampu hijau. Pengontrolan lampu lalu lintas dengan perhitungan kepadatan kendaraan memiliki akurasi hingga 77.03% sedangkan dengan perhitungan panjang antrian kendaraan mencapai 91.18%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.