Methicillin-resistant Staphylococcus aureus (MRSA) is a deadly pathogen that initially was limited to hospital and healthcare facilities but has gradually became a growing problem in healthy children and adults. Pterostilbene belongs to the phenylpropanoid phytoalexin which is involved in plant response to various pathogen and herbivores attack. The aim of this study is to evaluate the anti-MRSA action of pterostilbene in combination with selected antibiotics; vancomycin, linezolid and oxacillin against ATCC 43300 and ATCC 33591. The minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and fractional inhibitory concentration (FIC) index values were determined. Microbroth dilution technique and microdilution checkerboard (MDC) assay were employed. The MIC and MBC of pterostilbene against ATCC 33591 was 31.25 and 62.50 µg mL −1 , respectively. While for ATCC 43300, the MBC value was also twice (62.50 µg mL −1 ) its MIC value of 31.25 µg mL −1 . This indicated that pterostilbene was bacteriostatic against both MRSA strains. Our MIC/MBC study also showed that linezolid exhibited bacteriostatic action but, oxacillin and vancomycin were bactericidal. MDC study showed that pterostilbene-oxacillin combination exhibited lowest FIC value (0.56) against both MRSA strains which indicated partial synergistic interaction. On the other hand, pterostilbene was additive (FIC 1.00) in combination with vancomycin whereas pterostilbene-linezolid combination displayed indifference effect with FIC of 1.25 against both MRSA strains. Pterostilbene in combination with oxacillin partially enhanced anti-MRSA activity with twofold reduction in MIC of oxacillin by acting at different site at the bacterial cell wall from that of oxacillin but more specific to the site of action of vancomycin.
Colorectal cancer is the most common malignant cancer in developing countries. Canarium odontophyllum, also known as “Dabai” or “Borneo Olive“ is among the natural plants that can potentially be used as an anticancer agent. This study aims to determine the antiproliferative activities and cytotoxicity effects of acetone extract from C. odontophyllum stem bark against human colorectal cancer cell lines HCT 116 and HT 29. Acetone extract of C. odontophyllum stem bark exerted a significant cytotoxic effect on HCT 116 and HT 29 cells determined by MTT assay at the concentration of 12.5 μg/mL to 200 μg/mL for 24, 48, and 72 hours treatment. It was found that acetone extract of C. odontophyllum stem bark inhibited proliferation of HCT 116 with an IC50 value of 184.93 ± .0 μg/mL, 61.24 ± .1 μg/mL, 79.98 ± .029 for 24, 48 and 72 hours respectively. The findings also showed that acetone extract of C. odontophyllum stem bark revealed a lower inhibitory effect against HT-29 with an IC50 value of more than 200 μg/mL for 24, 48 and 72 hours. However, acetone extract of C. odontophyllum stem bark at similar concentrations and time points did not show any cytotoxic effect to normal colorectal fibroblast cell CCD18-Co. In conclusion, the acetone extract of C. odontophyllum stem bark exhibited more sensitivity against HCT 116 than HT 29. Its antiproliferative ability towards HCT 116 and HT 29 cells provides insight that this extract may serve as an anticancer agent against colorectal cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.