BackgroundEpidemiologic measures of the dengue burden such as prevalence and incidence are important for policy-making and monitoring the progress of disease control. It is a common practice where epidemiologic and economic research estimate dengue burden based on notification data. However, a basic challenge in estimating the incidence of dengue is that a significant proportion of infected population are asymptomatic. It can be overcome by using mathematical models that relate observed prevalence and mortality to incidence. In this study, we estimate the trend of dengue incidence and hospitalization in Malaysia.MethodsThis study is based entirely on the available secondary data sources on dengue in Malaysia. The age-specific incidence of dengue between 2001 and 2013 was estimated using the prevalence and mortality estimates in an incidence-prevalence-mortality (IPM) model. Data on dengue prevalence were extracted from six sero-surveys conducted in Malaysia between 2001 and 2013; while statistics on dengue notification and Case Fatality Rate were derived from National Dengue Surveillance System. Dengue hospitalization data for the years 2009 to 2013 were extracted from the Health Informatics Centre and the volumes of dengue hospitalization for hospitals with missing data were estimated with Poisson models.ResultsThe dengue incidence in Malaysia varied from 69.9 to 93.4 per 1000 population (pkp) between 2001 and 2013.The temporal trend in incidence rate was decreasing since 2001. It has been reducing at an average rate of 2.57 pkp per year from 2001 to 2013 (p = 0.011). The age-specific incidence of dengue decreased steadily with dengue incidence reaching zero by age > 70 years. Dengue notification rate has remained stable since 2001 and the number of notified cases each year was only a small fraction of the incident cases (0.7 to 2.3%). Similarly, the dengue hospitalization was larger but still a small fraction of the incident cases (3.0 to 5.6%).ConclusionDengue incidence can be estimated with the use of sero-prevalence surveys and mortality data. This study highlights a reducing trend of dengue incidence in Malaysia and demonstrates the discrepancy between true dengue disease burden and cases reported by national surveillance system. Sero-prevalence studies with representative samples should be conducted regularly to allow better estimation of dengue burden in Malaysia.
BackgroundHospitalization due to dengue illness is an important measure of dengue morbidity. However, limited studies are based on administrative database because the validity of the diagnosis codes is unknown. We validated the International Classification of Diseases, 10th revision (ICD) diagnosis coding for dengue infections in the Malaysian Ministry of Health’s (MOH) hospital discharge database.MethodsThis validation study involves retrospective review of available hospital discharge records and hand-search medical records for years 2010 and 2013. We randomly selected 3219 hospital discharge records coded with dengue and non-dengue infections as their discharge diagnoses from the national hospital discharge database. We then randomly sampled 216 and 144 records for patients with and without codes for dengue respectively, in keeping with their relative frequency in the MOH database, for chart review. The ICD codes for dengue were validated against lab–based diagnostic standard (NS1 or IgM).ResultsThe ICD-10-CM codes for dengue had a sensitivity of 94%, modest specificity of 83%, positive predictive value of 87% and negative predictive value 92%. These results were stable between 2010 and 2013. However, its specificity decreased substantially when patients manifested with bleeding or low platelet count.ConclusionThe diagnostic performance of the ICD codes for dengue in the MOH’s hospital discharge database is adequate for use in health services research on dengue.Electronic supplementary materialThe online version of this article (10.1186/s12913-018-3104-z) contains supplementary material, which is available to authorized users.
Cancer incidence and mortality are rapidly growing worldwide, and Breast Cancer is one of the leading causes of death among women in Malaysia. Social support is an important aspect of the Quality of Life (QoL) as it affects the psychological well-being and health of the patients. The aim of this study is to assess the quality of life and relationship of QoL with social support among female patients with diagnosed Breast Cancer. This is a cross-sectional study involving 259 female patients with diagnosed Breast Cancer from the outpatient unit of the National Cancer Institute, Malaysia. The European Organization for Research and Treatment of Cancer Quality of Life Questionnaire (EORTC QLQ-C30) and its breast-specific module (QLQ-BR23) measured QoL and social support by using Perceived Social Support (MPSS) questionnaires. The data was analysed using SPSS version 25.0. The result of this study found that women with Breast Cancer in Malaysia had an excellent global quality of life in which they were able to achieve the highest score in their role and physical function. The result also showed a high rate of social support especially supports from family. There was a positive relationship between QoL and social support (rs: 0.25) generally with a p-value less than 0.05. Therefore, effective measures need to be taken and implemented concerning improving the QoL of Breast Cancer patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.