The need of clean and renewable energy, as well as the power shortage in Gaza strip with few wind energy studies conducted in Palestine, provide the importance of this paper. Probability density function is commonly used to represent wind speed frequency distributions for the evaluation of wind energy potential in a specific area. This study shows the analysis of the climatology of the wind profile over the State of Palestine; the selections of the suitable probability density function decrease the wind power estimation error percentage. A selection of probability density function is used to model average daily wind speed data recorded at for 10 years in Gaza strip. Weibull probability distribution function has been estimated for Gaza based on average wind speed for 10 years. This assessment is done by analyzing wind data using Weibull probability function to find out the characteristics of wind energy conversion. The wind speed data measured from January 1996 to December 2005 in Gaza is used as a sample of actual data to this study. The main aim is to use the Weibull representative wind data for Gaza strip to show how statistical model for Gaza Strip over ten years. Weibull parameters determine by author depend on the pervious study using seven numerical methods, Weibull shape factor parameter is 1.7848, scale factor parameter is 4.3642 ms-1, average wind speed for Gaza strip based on 10 years actual data is 2.95 ms-1 per a day so the behavior of wind velocity based on probability density function show that we can produce energy in Gaza strip.
The use of Model Predictive Control (MPC) is investigated for a three phase to three phase direct matrix converter with input and output LC filter for power supply applications. It allows generation of sinusoidal output voltages and input currents with low harmonic distortion. The work describes in details the design of the proposed finite states model predictive control in conjunction with a full load observer. The proposed matrix converter power supply produces unity input power factor and a perfect tracking of the sinusoidal output voltage, accurately following the imposed reference in the presence of a linear load. A simulation study is presented to validate the proposed control scheme.
The generation, distributionand transmission of electricity in Palestine have recently emerged as major issues. This study comprehensively assesses the production of wind energy and the estimation of wind energy potential in Palestine’s south coastal plain. The goal is to evaluate Palestine’s wind energy production by studying wind data and calculating energy and power. This study analyses two actual time series datasets. Findings are elaborated to determine the wind energy conversion per 1 m2. The wind speed data from January 1996 to December 2006 in Gaza and from January 2012 to December 2015 in Ashqelon are selected as the data sample. This study is crucial given the need for clean and renewable energy, the power shortage in the Gaza Strip and the limited number of wind energy studies conducted in the south coastal plain of Palestine, especially Gaza Strip. This study estimates the wind energy potential of the Gaza Strip to determine the wind potential. The annual mean wind speed and power are 4.11 ms-1 and 903.4 Wm-2, respectively. Moreover, the study clarifies the electrical energy generation in the Gaza Strip using small-scale turbines and offers a feasible alternative to existing schemes.
Smart street light is an intelligent control of street lights to optimize the problem of power consumption of the street , late in night. Currently, usual street lights are automatically turn on when it becomes dark and turn off when it becomes bright. This is huge waste of energy in the entire world as it is an essential community service, but current implementation is not efficient. Conventional street lights are being replaced by Light Emitting Diode (LED) street lighting system, which reduces the power consumption. The focus of this project is to design a system of street lights controller to provide a reduction in power consumption. The prototype is design by using Light Dependent Resistor (LDR), Infrared sensor (IR), battery and LED. All this component was controlled by Arduino UNO
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.