Experimental binderless and adhesive-bonded particleboards were made from three different sample sizes, 0 to 103 µm, 104 to 210 µm, and 211 to 500 µm from Rhizophora spp. wood trunk at 1.0 g cm-3. The objective was to evaluate the physical and mechanical properties of the particleboards. The binderless and soy-lignin bonded particleboards were fabricated and studied based on the density, internal bonding, modulus of rupture, water absorption, and thickness swelling. Microstructure study using scanning electron microscopy (SEM) and elemental analysis by carbon hydrogen nitrogen (CHN) analyser were also performed. Particleboards with adhesives improved the internal bond strength. Smaller particle sizes also were shown to be able to improve the thickness swelling outcomes, with lower hygroscopic properties. The SEM images showed that smaller particle size allowed better bonding with adhesives and provided superior strength in the fabrication of tissue equivalent phantom material. The CHN ratio demonstrated by soy flour and lignin revealed no major difference when compared with the Rhizophora spp. samples, showing basic chemical composition of natural adhesives, which was crucial in the fabrication of tissue-mimicking phantom. The study revealed the potential of soy flour and lignin as adhesives for the fabrication of Rhizophora spp. particleboard as a tissue equivalent phantom material.
Rhizophora spp. particleboard with the incorporation of lignin and soy flour as binders were fabricated and the influence of different percentages of lignin and soy flour (0%, 6% and 12%) on the physico-mechanical properties of the particleboard were studied. The samples were characterised by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray fluorescence (XRF) and internal bonding. The results stipulated that the addition of binders in the fabrication of the particleboard did not change the functional groups according to the FTIR spectrum. For XRD, addition of binders did not reveal any major transformation within the composites. SEM and EDX analyses for all percentages of binders added showed no apparent disparity; however, it is important to note that the incorporation of binders allows better bonding between the molecules. In XRF analysis, lower percentage of chlorine in the adhesive-bonded samples may be advantageous in maintaining the natural properties of the particleboard. In internal bonding, increased internal bond strength in samples with binders may indicate better structural integrity and physico-mechanical strength. In conclusion, the incorporation of lignin and soy flour as binders may potentially strengthen and fortify the particleboard, thus, can be a reliable phantom in radiation dosimetry applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.