The purpose of this study was to determine the applicability of methyl methacrylate (MMA) and MMA–styrene in treating batai (Paraserianthes falcataria) wood. The effectiveness of the treatment was evaluated based on Fourier transform infrared spectroscopy (FTIR) analysis, physico-mechanical properties of the treated wood, and moisture sorption isotherm using dynamic vapour sorption (DVS) apparatus. Physico-mechanical properties of the modified batai wood were improved. The MMA-treated batai wood showed better improvement in terms of physical and mechanical properties compared to the MMA–styrene-treated batai wood. The equilibrium moisture content (EMC) for untreated batai wood was higher than that of treated samples. At 95% RH, the EMC for untreated batai wood was 20.7%, whereas the EMC for MMA- and MMA–styrene-treated samples was 7.9 and 8.8%, respectively. The findings indicate that the modified batai wood absorbed less moisture compared to the untreated batai wood. Moreover, the untreated batai wood had larger hysteresis loop than the treated batai wood. The highest hysteresis value was observed at 80% RH for untreated batai wood (3.8%), followed by MMA–styrene-treated batai wood (1.7%) and MMA-treated batai wood (1.2%). Both MMA and MMA–styrene proved to be effective treatments for batai wood because they reduced its hygroscopicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.