Abstract:The Tropical Rainfall Measuring Mission (TRMM) was the first Earth Science mission dedicated to studying tropical and subtropical rainfall. Up until now, there is still limited knowledge on the accuracy of the version 7 research product TRMM 3B42-V7 despite having the advantage of a high temporal resolution and large spatial coverage over oceans and land. This is particularly the case in tropical regions in Asia. The objective of this study is therefore to analyze the performance of rainfall estimation from TRMM 3B42-V7 (henceforth TRMM) using rain gauge data in Malaysia, specifically from the Pahang river basin as a case study, and using a set of performance indicators/scores. The results suggest that the altitude of the region affects the performances of the scores. Root Mean Squared Error (RMSE) is lower mostly at a higher altitude and mid-altitude. The correlation coefficient (CC) generally shows a positive but weak relationship between the rain gauge measurements and TRMM (0 < CC < 0.4), while the Nash-Sutcliffe Efficiency (NSE) scores are low (NSE < 0.1). The Percent Bias (PBIAS) shows that TRMM tends to overestimate the rainfall measurement by 26.95% on average. The Probability of Detection (POD) and Threat Score (TS) demonstrate that more than half of the pixel-point pairs have values smaller than 0.7. However, the Probability of False Detection (POFD) and False Alarm Rate (FAR) show that most of the pixel-point gauges have values lower than 0.55. The seasonal analysis shows that TRMM overestimates during the wet season and underestimates during the dry season. The bias adjustment shows that Mean Bias Correction (MBC) improved the scores better than Double-Kernel Residual Smoothing (DS) and Residual Inverse Distance Weighting (RIDW). The large errors imply that TRMM may not be suitable for applications in environmental, water resources, and ecological studies without prior correction.
Rapid, accurate and inexpensive methods are required to analyze plant traits throughout all crop growth stages for plant phenotyping. Few studies have comprehensively evaluated plant traits from multispectral cameras onboard UAV platforms. Additionally, machine learning algorithms tend to over- or underfit data and limited attention has been paid to optimizing their performance through an ensemble learning approach. This study aims to (1) comprehensively evaluate twelve rice plant traits estimated from aerial unmanned vehicle (UAV)-based multispectral images and (2) introduce Random Forest AdaBoost (RFA) algorithms as an optimization approach for estimating plant traits. The approach was tested based on a farmer’s field in Terengganu, Malaysia, for the off-season from February to June 2018, involving five rice cultivars and three nitrogen (N) rates. Four bands, thirteen indices and Random Forest-AdaBoost (RFA) regression models were evaluated against the twelve plant traits according to the growth stages. Among the plant traits, plant height, green leaf and storage organ biomass, and foliar nitrogen (N) content were estimated well, with a coefficient of determination (R2) above 0.80. In comparing the bands and indices, red, Normalized Difference Vegetation Index (NDVI), Ratio Vegetation Index (RVI), Red-Edge Wide Dynamic Range Vegetation Index (REWDRVI) and Red-Edge Soil Adjusted Vegetation Index (RESAVI) were remarkable in estimating all plant traits at tillering, booting and milking stages with R2 values ranging from 0.80–0.99 and root mean square error (RMSE) values ranging from 0.04–0.22. Milking was found to be the best growth stage to conduct estimations of plant traits. In summary, our findings demonstrate that an ensemble learning approach can improve the accuracy as well as reduce under/overfitting in plant phenotyping algorithms.
Studies have suggested that the need for site-specific fertilizer application to reduce waste of resources as soil nutrients varies across the Malaysian rice fields. The present study was aiming to determine the physiological and yield responses of five rice varieties (MR269, MR297, MR220CL2, MR219, and UPUTRA) treated with three nitrogen (N) rates under farmer’s field condition. The experiment design was a split-plot randomized complete block design, in which N rates, i.e. low (76 kg N ha-1), farmers’ practice (109 kg N ha-1) and high (142 kg N ha-1), were the main plot while rice varieties were the sub-plot. In general, harvestable panicle yield including the grain (at 14% moisture content) of all varieties was between 5.4 and 7.4 t ha-1 under all N treatments. Among all varieties, MR220CL2 recorded significantly higher yield, irrespective of N treatments. The physiological responses of rice varieties to N treatments, however, were mostly non-significant except for panicle biomass. Specifically, each variety recorded different biomass partitioning percentages for different organs at different growth phases. In the case of N treatments, there was no significant difference in the yield between 30% low and 30% high N rates as compared to farmer’s practice at harvest. Hence, it could be suggested that farmers may reduce N application of about 30% without significant reduction in harvestable panicle yield for this specific plot. However, the potential N uptake might also be affected by unaccounted factors such as the availability of micronutrients and planting density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.