Sol-gel method is the simplest method and has the ability to control the particle size and morphology through systematic monitoring of reaction parameters. The objective of this research is to synthesize silica nanostructures by sol-gel method and to characterize the synthesized silica nanostructures. Silica nanoparticles were synthesized via the sol-gel method using Tetraethyl orthosilicate as a precursor. The acetic acid and distilled water were used as the catalyst and the hydrolyzing agent. Varied parameters of the study were the aging time in the range of 2 to 6 h and the calcination temperature in the range of 600-700• C. The obtained silica nanopowder was characterized using FESEM, and Nano-Particle Size Analyzer. The results show that the silica nanospheres were successfully synthesized by using sol-gel method with the optimum parameters of 700• C of calcination temperature and 2 h of aging time. The average size of silica nanoparticles was in the range of 79.68 nm to 87.35 nm.
Kenaf fiber (KF) based thermoplastic natural rubber (TPNR) composite was produced by melt blending with polypropylene (PP). Kenaf fiber (15% by volume) and TPNR were mixed in as Haake 600p internal mixer. The fracture behavior of the TPNR matrix and of TPNR-kenaf (with and without maleic anhydride grafted polypropylene, MAPP) composites was evaluated using the essential work of fracture (EWF) method and double edge notched tensile (DENT) specimens. Various ligament lengths were employed ranging from 4 to 12 mm. The strain rate was fixed at 2 mm/min. The specific work of fracture (w e ) and plastic work (bw p ) showed the highest energy for TPNR that corresponds to its ductility and allows the application of the EWF approach. It was found that the presence of kenaf fibers and MAPP reduced the toughness of TPNR and changed the ductile fracture to brittle behavior. SEM observation revealed that energy absorption mechanisms include matrix deformation, fiber pullout, and fiber breakage. Acoustic emission (AE) was employed to analyze the failure processes further. The signals emitted by composites were substantially higher than that of the TPNR matrix, reflecting that also the failure mechanisms were affected by the fibers incorporated.KEY WORDS: thermoplastic natural rubber, kenaf fiber, essential work of fracture, acoustic emission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.