Iron nitrate supported hexagonal mesoporous (Fe-HMS) catalyst were successfully synthesized for Fenton-like oxidative degradation of Reactive Green-19 (RG19). Effects of pH, light intensity, catalyst amount, dye concentration, sensitizers, etc., were studied to optimize conditions for enhanced photo-catalytic activity. SEM, EDX, BET and UV-Vis (diffused reflectance mode) techniques were used to revealed the Fe-HMS physico-chemical properties. Kinetic study RG-19 treatment process at a reaction temperature 40°C, pH 3, 3 mgL -1 of Fe-HMS, 50 µL of H 2 O 2 , and 100 mgL -1 of dye were successfully carried out. The Fenton-like process correlation coefficient favors the first order kinetic model. COD and metal leaching analysis were done and results revealed that they were below DOE standard for effluent. Therefore, the treated water can safely discharge to the environment. The Fe-HMS catalyst reusability proved that it could be reused and has stability in reaction more than four cycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.