Solar thermal energy is one of the promising renewable and sustainable energy that have gain research interest. However, the nature of intermittent solar irradiation limits the usage of this energy. Phase change material (PCM) are substance that has the property of absorbing and releasing thermal energy through phase transformation. Combination of graphene foam/PCM composite will be able to absorb heat from solar thermal energy and sustain energy release to thermoelectric generator (TEG) for electrical conversion. Two different PCM material were tested which are petroleum-based paraffin wax and bio-based PCM beeswax. Thermal properties of both materials were measured using DSC and heat absorption were tested under real solar irradiation. This solar-thermal converter showed that graphene/paraffin/beeswax composite is more effective than the paraffin wax or beeswax alone. The recorded results also showed that combination of these petroleum based and bio-based PCM with added graphene foam could retain longer heat than graphene/paraffin wax and individual PCM. The longer heat can be stored in solar-thermal converter device may sustain electricity generation even with absence of solar energy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.