Cardiovascular disease (CVD) is the leading cause of death worldwide, in both developed and developing countries. According to the WHO report, the morbidity and mortality caused by CVD will continue to rise with the estimation of death going up to 22.2 million in 2030. NADPH oxidase (NOX)-derived reactive oxygen species (ROS) production induces endothelial nitric oxide synthase (eNOS) uncoupling and mitochondrial dysfunction, resulting in sustained oxidative stress and the development of cardiovascular diseases. Seven distinct members of the family have been identified of which four (namely, NOX1, 2, 4 and 5) may have cardiovascular functions. Currently, the treatment and management plan for patients with CVDs mainly depends on the drugs. However, prolonged use of prescribed drugs may cause adverse drug reactions. Therefore, it is crucial to find alternative treatment options with lesser adverse effects. Natural products have been gaining interest as complementary therapy for CVDs over the past decade due to their wide range of medicinal properties, including antioxidants. These might be due to their potent active ingredients, such as flavonoid and phenolic compounds. Numerous natural compounds have been demonstrated to have advantageous effects on cardiovascular disease via NADPH cascade. This review highlights the potential of natural products targeting NOX-derived ROS generation in treating CVDs. Emphasis is put on the activation of the oxidases, including upstream or downstream signalling events.
Hyperhomocysteinemia has been linked to an increased risk of cardiovascular diseases. High levels of homocysteine (Hcy) promote endoplasmic reticulum (ER) stress that can increase reactive oxygen species (ROS), leading to endothelial dysfunction. Thymoquinone (TQ) is the major active ingredient in Nigella sativa seeds volatile oil and is shown to have a cardioprotective effect. However, no study evaluated the effect of TQ against Hcy-induced endothelial dysfunction. Thus, this study aims to investigate the effects and mechanisms of TQ in reversing Hcy-induced endothelial dysfunction. Isolated aorta from male Sprague-Dawley (SD) rats incubated with Hcy (500 µM) and co-treated with or without TQ (0.1 µM, 1 µM, and 10 µM), 20 µM TUDCA, 100 µM Apocynin or 1 mM Tempol in organ bath to study the vascular function. Additionally, human umbilical vein endothelial cells (HUVECs) were incubated with Hcy (10 mM) and various concentrations of TQ (1 and 10 𝜇M), Tempol (100 𝜇M), Apocynin (100 𝜇M), TUDCA (100 𝜇M) or H2O2 (0.25 mM) to evaluate the cell viability by using a phase contrast microscope and dye exclusion assay. Involvement of ER stress pathway, ROS and NO bioavailability were accessed via immunoassay and fluorescent staining respectively. Molecular docking was performed to evaluate the binding affinity of TQ to GRP78. Our results revealed that Hcy impaired endothelium-dependant relaxation in isolated aorta and induced apoptosis in HUVECs. These effects were reversed by TQ, TUDCA, tempol and apocynin. Treatment with TQ (10𝜇M) also reduced ROS level, improved NO bioavailability as well reduced GRP78 and NOX4 protein in HUVECs. Result from the molecular docking study showed that TQ could bind well to GRP78 through hydrogen bond and hydrophobic interaction with the amino acid at GRP78 ATP binding pocket. Taken together, the present results suggest that TQ preserved endothelial function in rat aorta and reduced apoptosis of HUVECs induced by Hcy through the inhibition of ER stress-mediated ROS and eNOS uncoupling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.