Southeast Asia (SEA) is enriched with a complex history of peopling. Malaysia, which is located at the crossroads of SEA, has been recognized as one of the hubs for early human migration. To unravel the genomic complexity of the native inhabitants of Malaysia, we sequenced 12 samples from 3 indigenous populations from Peninsular Malaysia and 4 native populations from North Borneo to a high coverage of 28-37×. We showed that the Negritos from Peninsular Malaysia shared a common ancestor with the East Asians, but exhibited some level of gene flow from South Asia, while the North Borneo populations exhibited closer genetic affinity towards East Asians than the Malays. The analysis of time of divergence suggested that ancestors of Negrito were the earliest settlers in the Malay Peninsula, whom first separated from the Papuans ~ 50-33 thousand years ago (kya), followed by East Asian (~ 40-15 kya), while the divergence time frame between North Borneo and East Asia populations predates the Austronesian expansion period implies a possible pre-Neolithic colonization. Substantial Neanderthal ancestry was confirmed in our genomes, as was observed in other East Asians. However, no significant difference was observed, in terms of the proportion of Denisovan gene flow into these native inhabitants from Malaysia. Judging from the similar amount of introgression in the Southeast Asians and East Asians, our findings suggest that the Denisovan gene flow may have occurred before the divergence of these populations and that the shared similarities are likely an ancestral component.
Peninsular Malaysia is a strategic region which might have played an important role in the initial peopling and subsequent human migrations in Asia. However, the genetic diversity and history of human populations--especially indigenous populations--inhabiting this area remain poorly understood. Here, we conducted a genome-wide study using over 900,000 single nucleotide polymorphisms (SNPs) in four major Malaysian ethnic groups (MEGs; Malay, Proto-Malay, Senoi and Negrito), and made comparisons of 17 world-wide populations. Our data revealed that Peninsular Malaysia has greater genetic diversity corresponding to its role as a contact zone of both early and recent human migrations in Asia. However, each single Orang Asli (indigenous) group was less diverse with a smaller effective population size (N(e)) than a European or an East Asian population, indicating a substantial isolation of some duration for these groups. All four MEGs were genetically more similar to Asian populations than to other continental groups, and the divergence time between MEGs and East Asian populations (12,000--6,000 years ago) was also much shorter than that between East Asians and Europeans. Thus, Malaysian Orang Asli groups, despite their significantly different features, may share a common origin with the other Asian groups. Nevertheless, we identified traces of recent gene flow from non-Asians to MEGs. Finally, natural selection signatures were detected in a batch of genes associated with immune response, human height, skin pigmentation, hair and facial morphology and blood pressure in MEGs. Notable examples include SYN3 which is associated with human height in all Orang Asli groups, a height-related gene (PNPT1) and two blood pressure-related genes (CDH13 and PAX5) in Negritos. We conclude that a long isolation period, subsequent gene flow and local adaptations have jointly shaped the genetic architectures of MEGs, and this study provides insight into the peopling and human migration history in Southeast Asia.
Copy number variations (CNVs) are genomic structural variations that result from the deletion or duplication of large genomic segments. The characterization of CNVs is largely underrepresented, particularly those of indigenous populations, such as the Orang Asli in Peninsular Malaysia. In the present study, we first characterized the genome-wide CNVs of four major native populations from Peninsular Malaysia, including the Malays and three Orang Asli populations; namely, Proto-Malay, Senoi, and Negrito (collectively called PM). We subsequently assessed the distribution of CNVs across the four populations. The resulting global CNV map revealed 3102 CNVs, with an average of more than 100 CNVs per individual. We identified genes harboring CNVs that are highly differentiated between PM and global populations, indicating that these genes are predominantly enriched in immune responses and defense functions, including APOBEC3A_B, beta-defensin genes, and CCL3L1, followed by other biological functions, such as drug and toxin metabolism and responses to radiation, suggesting some attributions between CNV variations and adaptations of the PM groups to the local environmental conditions of tropical rainforests.
Copy number variation (CNV) has been recognized as a major contributor to human genome diversity. It plays an important role in determining phenotypes and has been associated with a number of common and complex diseases. However CNV data from diverse populations is still limited. Here we report the first investigation of CNV in the indigenous populations from Peninsular Malaysia. We genotyped 34 Negrito genomes from Peninsular Malaysia using the Affymetrix SNP 6.0 microarray and identified 48 putative novel CNVs, consisting of 24 gains and 24 losses, of which 5 were identified in at least 2 unrelated samples. These CNVs appear unique to the Negrito population and were absent in the DGV, HapMap3 and Singapore Genome Variation Project (SGVP) datasets. Analysis of gene ontology revealed that genes within these CNVs were enriched in the immune system (GO:0002376), response to stimulus mechanisms (GO:0050896), the metabolic pathways (GO:0001852), as well as regulation of transcription (GO:0006355). Copy number gains in CNV regions (CNVRs) enriched with genes were significantly higher than the losses (P value <0.001). In view of the small population size, relative isolation and semi-nomadic lifestyles of this community, we speculate that these CNVs may be attributed to recent local adaptation of Negritos from Peninsular Malaysia.
ObjectivesTo determine the prevalence of metabolic syndrome (MS), ascertain the status of coronary risk biomarkers and establish the independent predictors of these biomarkers among the Negritos.SettingsHealth screening programme conducted in three inland settlements in the east coast of Malaysia and Peninsular Malaysia.Subjects150 Negritos who were still living in three inland settlements in the east coast of Malaysia and 1227 Malays in Peninsular Malaysia. These subjects were then categorised into MS and non-MS groups based on the International Diabetes Federation (IDF) consensus worldwide definition of MS and were recruited between 2010 and 2015. The subjects were randomly selected and on a voluntary basis.Primary and secondary outcome measuresThis study was a cross-sectional study. Serum samples were collected for analysis of inflammatory (hsCRP), endothelial activation (sICAM-1) and prothrombogenesis [lp(a)] biomarkers.ResultsMS was significantly higher among the Malays compared with Negritos (27.7%vs12.0%). Among the Malays, MS subjects had higher hsCRP (p=0.01) and sICAM-1 (p<0.05) than their non-MS counterpart. There were no significant differences in all the biomarkers between MS and the non-MS Negritos. However, when compared between ethnicity, all biomarkers were higher in Negritos compared with Malays (p<0.001). Binary logistic regression analysis affirmed that Negritos were an independent predictor for Lp(a) concentration (p<0.001).ConclusionsThis study suggests that there may possibly be a genetic influence other than lifestyle, which could explain the lack of difference in biomarkers concentration between MS and non-MS Negritos and for Negritos predicting Lp(a).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.