Problem statement: Fuzzy Topographic Topological Mapping (FTTM) was developed to solve the neuromagnetic inverse problem. FTTM consisted of four topological spaces and connected by three homeomorphisms. FTTM 1 and FTTM 2 were developed to present 3-D view of an unbounded single current source and bounded multicurrent sources, respectively. FTTM 1 and FTTM 2 were homeomorphic and this homeomorphism will generate another 14 FTTM. We conjectured if there exist n elements of FTTM, then the numbers of new elements are n4-n. Approach: In this study, the conjecture was proven by viewing FTTMs as sequence and using its geometrical features. Results: In the process, several definitions were developed, geometrical and algebraic properties of FTTM were discovered. Conclusion: The conjecture was proven and some features of the sequence appear in Pascal Triangle
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.