The implementation of video-based non-contact technologies to monitor the vital signs of preterm infants in the hospital presents several challenges, such as the detection of the presence or the absence of a patient in the video frame, robustness to changes in lighting conditions, automated identification of suitable time periods and regions of interest from which vital signs can be estimated. We carried out a clinical study to evaluate the accuracy and the proportion of time that heart rate and respiratory rate can be estimated from preterm infants using only a video camera in a clinical environment, without interfering with regular patient care. A total of 426.6 h of video and reference vital signs were recorded for 90 sessions from 30 preterm infants in the Neonatal Intensive Care Unit (NICU) of the John Radcliffe Hospital in Oxford. Each preterm infant was recorded under regular ambient light during daytime for up to four consecutive days. We developed multi-task deep learning algorithms to automatically segment skin areas and to estimate vital signs only when the infant was present in the field of view of the video camera and no clinical interventions were undertaken. We propose signal quality assessment algorithms for both heart rate and respiratory rate to discriminate between clinically acceptable and noisy signals. The mean absolute error between the reference and camera-derived heart rates was 2.3 beats/min for over 76% of the time for which the reference and camera data were valid. The mean absolute error between the reference and camera-derived respiratory rate was 3.5 breaths/min for over 82% of the time. Accurate estimates of heart rate and respiratory rate could be derived for at least 90% of the time, if gaps of up to 30 seconds with no estimates were allowed.
This thesis would not have been possible without the support of a great number of people. Above all, I would like to thank my doctoral supervisor, Professor Lionel Tarassenko. I will always be grateful for his mentorship. His genius, knowledge and enterprise have been an inspiration to me, and the example he has provided will stick with me long past my time at Oxford. Special thanks are due to the postdocs, docs and predocs in the Biomedical Signal Processing group. In particular, I had a great slice of good fortune for sharing an office and ideas with
Non-contact vital sign monitoring enables the estimation of vital signs, such as heart rate, respiratory rate and oxygen saturation (SpO 2 ), by measuring subtle color changes on the skin surface using a video camera. For patients in a hospital ward, the main challenges in the development of continuous and robust non-contact monitoring techniques are the identification of time periods and the segmentation of skin regions of interest (ROIs) from which vital signs can be estimated. We propose a deep learning framework to tackle these challenges. Approach : This paper presents two convolutional neural network (CNN) models. The first network was designed for detecting the presence of a patient and segmenting the patient’s skin area. The second network combined the output from the first network with optical flow for identifying time periods of clinical intervention so that these periods can be excluded from the estimation of vital signs. Both networks were trained using video recordings from a clinical study involving 15 pre-term infants conducted in the high dependency area of the neonatal intensive care unit (NICU) of the John Radcliffe Hospital in Oxford, UK. Main results : Our proposed methods achieved an accuracy of 98.8% for patient detection, a mean intersection-over-union (IOU) score of 88.6% for skin segmentation and an accuracy of 94.5% for clinical intervention detection using two-fold cross validation. Our deep learning models produced accurate results and were robust to different skin tones, changes in light conditions, pose variations and different clinical interventions by medical staff and family visitors. Significance : Our approach allows cardio-respiratory signals to be continuously derived from the patient’s skin during which the patient is present and no clinical intervention is undertaken.
Patient detection and skin segmentation are important steps in non-contact vital sign monitoring as skin regions contain pulsatile information required for the estimation of vital signs such as heart rate, respiratory rate and peripheral oxygen saturation (SpO 2). Previous methods based on face detection or colour-based image segmentation are less reliable in a hospital setting. In this paper, we develop a multi-task convolutional neural network (CNN) for detecting the presence of a patient and segmenting the patient's skin regions. The multi-task model has a shared core network with two branches: a segmentation branch which was implemented using a fully convolutional network, and a classification branch which was implemented using global average pooling. The whole network was trained using images from a clinical study conducted in the neonatal intensive care unit (NICU) of the John Radcliffe hospital, Oxford, UK. Our model can produce accurate results and is robust to changes in different skin tones, pose variations, lighting variations, and routine interaction of clinical staff.
Critical care staff are presented with a large amount of data, which made it difficult to systematically evaluate. Early detection of patients whose condition is deteriorating could reduce mortality, improve treatment outcomes, and allow a better use of healthcare resources. In this study, we propose a data-driven framework for predicting the risk of mortality that combines high-accuracy recurrent neural networks with interpretable explanations. Our model processes time-series of vital signs and laboratory observations to predict the probability of a patient’s mortality in the intensive care unit (ICU). We investigated our approach on three public critical care databases: Multiparameter Intelligent Monitoring in Intensive Care III (MIMIC-III), MIMIC-IV, and eICU. Our models achieved an area under the receiver operating characteristic curve (AUC) of 0.87–0.91. Our approach was not only able to provide the predicted mortality risk but also to recognize and explain the historical contributions of the associated factors to the prediction. The explanations provided by our model were consistent with the literature. Patients may benefit from early intervention if their clinical observations in the ICU are continuously monitored in real time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.