Composite cement/BaSO4/Fe3O4/CuO with a thickness of 0.6 cm for various amounts of CuO: 2 wt%, 4 wt%, 6 wt%, and 8 wt% were successfully synthesized for the X-ray radiation shield. The bonding characteristics of composite and structural properties were determined using Fourier transform infrared spectra for the wavelength range of 4000–400 cm−1 and X-ray diffraction with the range of 2θ from 25° to 50°, respectively. The shielding ability was measured using a mobile X-ray with an energy of 55, 66, and 77 keV for determining the mass and linear attenuation coefficient, electronic and atomic cross-section. These shield characteristics best agreement with theoretical calculation from the XCOM database for energy < 77 keV with half value layer (HVL) < 0.3 cm. The best shielding in this study indicated by the lowest HVL and MFP is composite for CuO 8 wt%. The HVL and MFP shows better values compared to the previous reported using composite rubber-based, indicated high potentials composite in this study for design new and efficient radiology rooms as an alternative concrete, especially for X-ray radiation, in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.