A series of platinum(II) complexes containing dipyridophenazine (dppz) and C-deprotonated 2-phenylpyridine (N-CH) ligands were prepared and assayed for G-quadruplex DNA binding activities. [PtII(dppz-COOH)(N-C)]CF3SO3 (1; dppz-COOH = 11-carboxydipyrido[3,2-a:2',3'-c]phenazine) binds G-quadruplex DNA through an external end-stacking mode with a binding affinity of approximately 10(7) dm3 mol-1. G-quadruplex DNA binding is accompanied by up to a 293-fold increase in the intensity of photoluminescence at lambdamax = 512 nm. Using a biotinylated-primer extension telomerase assay, 1 was shown to be an effective inhibitor of human telomerase in vitro, with a telIC50 value of 760 nM.
Visible-light driven CO2 reduction is considered to be a sustainable energy source. However, earth-abundant molecular catalysts with high efficiency and robustness towards solar-driven CO2 reduction are limited. Herein, we report a cobalt complex supported by a tetradentate tripodal ligand, which demonstrates catalytic solar-driven CO2 reduction with TON(CO) > 900 over 70 h in the presence of a photosensitizer.
The interactions of a series of platinum(II) Schiff base complexes with c-myc G-quadruplex DNA were studied. Complex [PtL(1a)] (1 a; H(2)L(1a)=N,N'-bis(salicylidene)-4,5-methoxy-1,2-phenylenediamine) can moderately inhibit c-myc gene promoter activity in a cell-free system through stabilizing the G-quadruplex structure and can inhibit c-myc oncogene expression in cultured cells. The interaction between 1 a and G-quadruplex DNA has been examined by (1)H NMR spectroscopy. By using computer-aided structure-based drug design for hit-to-lead optimization, an in silico G-quadruplex DNA model has been constructed for docking-based virtual screening to develop new platinum(II) Schiff base complexes with improved inhibitory activities. Complex [PtL(3)] (3; H(2)L(3)=N,N'-bis{4-[1-(2-propylpiperidine)oxy]salicylidene}-4,5-methoxy-1,2-phenylenediamine) has been identified with a top score in the virtual screening. This complex was subsequently prepared and experimentally tested in vitro for its ability to stabilize or induce the formation of the c-myc G-quadruplex. The inhibitory activity of 3 (IC(50)=4.4 muM) is tenfold more than that of 1 a. The interaction between 1 a or 3 with c-myc G-quadruplex DNA has been examined by absorption titration, emission titration, molecular modeling, and NMR titration experiments, thus revealing that both 1 a and 3 bind c-myc G-quadruplex DNA through an external end-stacking mode at the 3' terminal face of the G-quadruplex. Such binding of G-quadruplex DNA with 3 is accompanied by up to an eightfold increase in the intensity of photoluminescence at lambda(max)=652 nm. Complex 3 also effectively down-regulated the expression of c-myc in human hepatocarcinoma cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.