SUMMARY
Myeloid-biased hematopoietic stem cells (MB-HSCs) play critical roles in recovery from injury, but little is known about how they are regulated within the bone marrow niche. Here, we describe an auto/paracrine physiologic circuit that controls quiescence of MB-HSCs and hematopoietic progenitors marked by histidine decarboxylase (Hdc). Committed Hdc+ myeloid cells lie in close anatomical proximity to MB-HSCs and produce histamine, which activates the H2 receptor on MB-HSCs to promote their quiescence and self-renewal. Depleting histamine-producing cells enforces cell cycle entry, induces loss of serial transplant capacity, and sensitizes animals to chemotherapeutic injury. Increasing demand for myeloid cells via LPS treatment specifically recruits MB-HSCs and progenitors into the cell cycle; cycling MB-HSCs fail to revert into quiescence in the absence of histamine feedback, leading to their depletion, while an H2 agonist protects MB-HSCs from depletion after sepsis. Thus, histamine couples lineage-specific physiological demands to intrinsically-primed MB-HSCs to enforce homeostasis.
Core award; Irving Pilot Translational Science award for new investigators Reliable in vitro expansion protocols of regulatory T cells (Tregs) are needed for clinical use. We studied the biology of Mauritian Cynomolgus macaque (MCM) Tregs and developed four in vitro Treg expansion protocols for translational studies. Tregs expanded 3000-fold when artificial antigen presenting cells (aAPCs) expressing human CD80, CD58 and CD32 were used throughout the culture. When donor peripheral blood mononuclear cells (PBMCs) were used as the single source of APCs followed by aAPCs, Tregs expanded 2000-fold. Tregs from all protocols suppressed the proliferation of anti-CD2CD3CD28 bead-stimulated autologous PBMCs albeit with different potencies, varying from 1:2-1:4 Treg:PBMC ratios, up to >1:32. Reculture of cryopreserved Tregs permitted reexpansion with improved suppressive activity. Occasionally, CD8 contamination was observed and resolved by resorting. Specificity studies showed greater suppression of stimulation by anti-CD2CD3CD28 beads of PBMCs from the same donor used for stimulation during the Treg cultures and of autologous cells than of third-party PBMC responders. Similar to humans, the Treg-specific demethylated region (TSDR) within the Foxp3 locus correlated with suppressive activity and expression of Foxp3. Contrary to humans, FoxP3 expression did not correlate with CD45RA or CD127 expression. In summary, we have characterized MCM Tregs and developed four Treg expansion protocols that can be used for preclinical applications. K E Y W O R D S animal models: nonhuman primate, basic (laboratory) research/science, cellular transplantation (nonislet), graft survival, immune regulation, immunobiology, immunosuppression/immune modulation, tolerance: chimerism, translational research/ science | 2187 ALONSO-GUALLART eT AL.
The male tail sensory rays in Caenorhabditis elegans are complex copulatory structures, the normal patterning of which requires a number of regulatory genes. Among them, mab-21 specifies the identity of sensory ray 6. By using green fluorescent protein reporters, we identify multiple cis-acting elements that control the developmental expression of mab-21. Traced with a functional mab-21::gfp gene driven by authentic regulatory sequences, mab-21 expression could be detected in hypodermal, neuronal, muscle, and ray cells. We showed here that the expression of mab-21 in the hypodermis and neuronal cells was dispensable for its function in ray 6. In contrast, its expression in the ray 6 structural cell and neurons as conferred by its 3 enhancer was crucial for determining the correct ray 6 identity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.