The modeling of image data by a general parametric family of statistical distributions plays an important role in many applications. In this paper, we propose to adopt the three-parameter generalized Gamma density (GGammaD) for modeling wavelet detail subband histograms and for texture image retrieval. The advantage of GGammaD over the existing generalized Gaussian density (GGD) is that it provides more flexibility to control the shape of model which is critical for practical histogram-based applications. To measure the discrepancy between GGammaDs, we use the symmetrized Kullback-Leibler distance (SKLD) and derive a closed form for the SKLD between GGammaDs. Such a distance can be computed directly and effectively via the model parameters, making our proposed scheme particularly suitable for image retrieval systems with large image database. Experimental results on the well-known databases reveal the superior performance of our proposed method compared with the current existing approaches.
The modeling of wavelet subband histograms via the product Bernoulli distributions (PBD) has received a lot of interest and the PBD model has been applied successfully in texture image retrieval. In order to fully understand the usefulness and effectiveness of the PBD model and its associated signature, namely, the bit-plane probability (BP) signature on image processing applications, we discuss and investigate some of their statistical properties. These properties would help to clarify the sufficiency of the BP signature to characterize wavelet subbands, which, in turn, justifies its use in real time applications. We apply the BP signature on supervised texture classification problem and experimental results suggest that the weighted L(1)-norm (rather than the standard L (1)-norm) should be used for the BP signature. Comparative classification experiments show that our method outperforms the current state-of-the-art Generalized Gaussian Density approaches.
This paper presents a multiphase fuzzy region competition model that takes into account spatial and frequency information for image segmentation. In the proposed energy functional, each region is represented by a fuzzy membership function and a data fidelity term that measures the conformity of spatial and frequency data within each region to (generalized) gaussian densities whose parameters are determined jointly with the segmentation process. Compared with the classical region competition model, our approach gives soft segmentation results via the fuzzy membership functions, and moreover, the use of frequency data provides additional region information that can improve the overall segmentation result. To efficiently solve the minimization of the energy functional, we adopt an alternate minimization procedure and make use of Chambolle's fast duality projection algorithm. We apply the proposed method to synthetic and natural textures as well as real-world natural images. Experimental results show that our proposed method has very promising segmentation performance compared with the current state-of-the-art approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.