Centrifugal microfluidic or lab-on-a-disc platforms have many advantages over other microfluidic systems. These advantages include a minimal amount of instrumentation, the efficient removal of any disturbing bubbles or residual volumes, and inherently available density-based sample transportation and separation. Centrifugal microfluidic devices applied to biomedical analysis and point-of-care diagnostics have been extensively promoted recently. This paper presents an up-to-date overview of these devices. The development of biomedical centrifugal microfluidic platforms essentially covers two categories: (i) unit operations that perform specific functionalities, and (ii) systems that aim to address certain biomedical applications. With the aim to provide a comprehensive representation of current development in this field, this review summarizes progress in both categories. The advanced unit operations implemented for biological processing include mixing, valving, switching, metering and sequential loading. Depending on the type of sample to be used in the system, biomedical applications are classified into four groups: nucleic acid analysis, blood analysis, immunoassays, and other biomedical applications. Our overview of advanced unit operations also includes the basic concepts and mechanisms involved in centrifugal microfluidics, while on the other hand an outline on reported applications clarifies how an assembly of unit operations enables efficient implementation of various types of complex assays. Lastly, challenges and potential for future development of biomedical centrifugal microfluidic devices are discussed.
Paris polyphylla is a traditional Chinese Medical herb that has been used in treating cancer for thousands of year. Without studies on the anticancer effects of Paris polyphylla being initiated before, we have first studied the component of Paris polyphylla and have spotted out a steroidal saponin, polyphyllin D. As long as the chemical structure and the improved synthesis of polyphyllin D were ascertained, both in vitro to in vivo studies were performed. It was found that treatment of MCF-7 and MDA-MB-231 cells with polyphyllin D resulted in the inhibition of viability and induction of apoptosis in a dose-dependent manner, with an IC50 of 5 microM and 2.5 microM, respectively, after 48 hours of incubations. Apoptosis of MCF-7 and MDA-MB-231 cells by polyphyllin D was evidenced by the occurrence of DNA fragmentation, formation of a hypodiploid peak in the cell cycle analysis, phosphatidyl-serine externalization and a late loss of membrane integrity. Mechanistically, polyphyllin D dissipates the mitochondrial membrane potential, induces a downregulation of anti-apoptotic Bcl-2 expression and an up-regulation of pro-apoptotic Bax expression, and activates caspase-9. These results suggest that polyphyllin D elicits apoptosis through mitochondria dysfunction. In vivo study demonstrated that daily administration of polyphyllin D (2.73 mg/kg body weight) through intravenous injection for ten days in nude mice bearing MCF-7 cells effectively reduced tumor growth for 50% in terms of tumor weight and size, given no significant toxicity in heart and liver to the host. All these findings provide novel insights that polyphyllin D could serve as a candidate in breast cancer treatment.
Photodynamic therapy (PDT) is an effective treatment for cancer by inducing apoptosis or necrosis in the target cells. Pheophorbide a (Pa), a chlorophyll derivative, is a photosensitzier which can induce significant anti-proliferative effects in a number of human cancer cell lines. This study investigated the action mechanism of Pa-mediated photodynamic therapy (Pa-PDT) on the human hepatocellular carcinoma, Hep3B cells. Pa-PDT significantly inhibited the growth of Hep3B cells with an IC50 value of 1.5 microM. Intracellular ROS level was increased in Pa-PDT treated cells and the cytotoxic effect could be reversed when ascorbic acid was applied. Pa was found to be localized in the mitochondria and then induced the target cells to undergo apoptosis, which was confirmed by propidium iodide staining and DNA fragmentation assay. Pa-PDT treatment also led to the depolarization of mitochondrial membrane potential (Deltapim) and a release of cytochrome c from mitochondria to the cytosol. The caspase cascade was activated as shown by a significant decrease of procaspase-3 and -9 in Pa-PDT treated cells in a dose-dependent manner. Furthermore, in nude mice model, Pa-PDT treatment could reduce the tumor size by 57% after 14 days treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.