During the last few years, the hybrid composite materials are replacing the conventional composite materials because of their superior properties. In the present communication, unidirectional banana-jute hybrid fiber-reinforced epoxy composites were prepared by varying the fiber content from 0 to 40 wt% with different weight ratios. The physical and thermal properties of the hybrid composites were tested as per ASTM standards. The influence of fiber content on density, thermal conductivity, specific heat, thermal diffusivity, thermal stability, and water absorption of hybrid composites was investigated. A new micromechanical model for the transverse thermal conductivity of hybrid fiber-reinforced polymer composites is developed using the law of minimal thermal resistance and equal law of specific equivalent thermal conductivity. The results are validated with the results obtained by experimental, numerical simulation, and analytical methods existing in the literature. In numerical, steady state heat transfer simulations were performed to calculate thermal conductivity by using ANSYS software. It is encouraging to notice that the experimental and numerical results are in close approximation with the values predicted by the micromechanical model suggested in this work. It is found that the measured properties of the hybrid composites are suitable for building components and automobiles in order to decrease energy consumption.
The utilization of natural fiber-reinforced polymer composites is rapidly increasing in many industrial applications and fundamental research. In this work, short banana-jute fiber-reinforced epoxy-based hybrid composite was prepared by varying the fiber loading (0-40 wt.%) and different weight ratios of banana and jute fiber (1:1, 1:3, and 3:1). The physical and thermal properties such as density, water absorption, thermal conductivity, specific heat and thermal diffusivity were evaluated as per ASTM standards. A new micromechanical model was developed for evaluating the effective thermal conductivity of short fiber-reinforced hybrid composites by using the law of minimal thermal resistance and equal law of specific equivalent thermal conductivity. The thermal conductivity was calculated numerically by using the steady state heat transfer simulations. The proposed model and numerical results were validated with the experimental results and analytical methods existing in the literature. The effective thermal conductivity was predicted with the proposed model, and the finite element method is in good agreement with the experimental values and observed an acceptable range of 0-6.5% and 0-11% error, respectively. The results reveal that the composite made with banana and jute in the weight ratio of 1:3 shows minimum void content, water absorption, thermal conductivity, and thermal diffusivity at all fiber loadings. The fabricated hybrid composites were suitable for building components and automobiles in order to reduce the energy consumption.
During the last few years, natural fiber composites are replacing synthetic fiber composites for practical applications due to their advantages like low density, light weight, low cost, biodegradability and high specific mechanical properties. In this connection, the present investigation deals with the fabrication and mechanical properties of unidirectional banana/jute hybrid fiber reinforced composites and compares with the single natural fiber reinforced composites. The physical and mechanical properties of the natural fiber composites were obtained by testing the composite for density, tensile, flexural, inter-laminar shear, impact, and hardness properties. The composite specimens with different weight percentages of fibers were fabricated by using hand lay-up technique and testing were carried out as per ASTM standards. Incorporation of both the fibers into epoxy matrix resulted in an increase in mechanical properties up to 30 wt% of fiber loading. It is found that the hybrid composite give encouraging results when compared with the individual fiber composites. The morphologies of the composites are also studied by scanning electron microscope. POLYM. COMPOS., 00:000-000,
The aim of present work is focused on the evaluation of elastic and thermal properties of unidirectional fiber-reinforced polymer composites with different volume fractions of fiber up to 0.7 using micromechanical approach. Two ways for calculating the material properties, that is, analytical and numerical approaches, were presented. In numerical approach, finite element analysis was used to evaluate the elastic modulus and thermal conductivity of composite from the constituent material properties. The finite element model based on three-dimensional micromechanical representative volume element (RVE) with a square and hexagonal packing geometry was implemented by using finite element code ANSYS. Circular cross section of fiber and square cross section of fiber were considered to develop RVE. The periodic boundary conditions are applied to the RVE to calculate elastic modulus of composite. The steady state heat transfer simulations were performed in thermal analysis to calculate thermal conductivity of composite. In analytical approach, the elastic modulus is calculated by rule of mixture, Halpin-Tsai model, and periodic microstructure. Thermal conductivity is calculated analytically by using rule of mixture, the Chawla model, and the Hashin model. The material properties obtained using finite element techniques were compared with different analytical methods and good agreement was achieved. The results are affected by a number of parameters such as volume fraction of the fibers, geometry of fiber, and RVE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.