Ruminant livestock are important sources of human food and global greenhouse gas emissions. Feed degradation and methane formation by ruminants rely on metabolic interactions between rumen microbes and affect ruminant productivity. Rumen and camelid foregut microbial community composition was determined in 742 samples from 32 animal species and 35 countries, to estimate if this was influenced by diet, host species, or geography. Similar bacteria and archaea dominated in nearly all samples, while protozoal communities were more variable. The dominant bacteria are poorly characterised, but the methanogenic archaea are better known and highly conserved across the world. This universality and limited diversity could make it possible to mitigate methane emissions by developing strategies that target the few dominant methanogens. Differences in microbial community compositions were predominantly attributable to diet, with the host being less influential. There were few strong co-occurrence patterns between microbes, suggesting that major metabolic interactions are non-selective rather than specific.
The potent greenhouse gas methane (CH4) is produced in the rumens of ruminant animals from hydrogen produced during microbial degradation of ingested feed. The natural animal-to-animal variation in the amount of CH4 emitted and the heritability of this trait offer a means for reducing CH4 emissions by selecting low-CH4 emitting animals for breeding. We demonstrate that differences in rumen microbial community structure are linked to high and low CH4 emissions in sheep. Bacterial community structures in 236 rumen samples from 118 high- and low-CH4 emitting sheep formed gradual transitions between three ruminotypes. Two of these (Q and S) were linked to significantly lower CH4 yields (14.4 and 13.6 g CH4/kg dry matter intake [DMI], respectively) than the third type (H; 15.9 g CH4/kg DMI; p<0.001). Low-CH4 ruminotype Q was associated with a significantly lower ruminal acetate to propionate ratio (3.7±0.4) than S (4.4±0.7; p<0.001) and H (4.3±0.5; p<0.001), and harbored high relative abundances of the propionate-producing Quinella ovalis. Low-CH4 ruminotype S was characterized by lactate- and succinate-producing Fibrobacter spp., Kandleria vitulina, Olsenella spp., Prevotella bryantii, and Sharpea azabuensis. High-CH4 ruminotype H had higher relative abundances of species belonging to Ruminococcus, other Ruminococcaceae, Lachnospiraceae, Catabacteriaceae, Coprococcus, other Clostridiales, Prevotella, other Bacteroidales, and Alphaproteobacteria, many of which are known to form significant amounts of hydrogen. We hypothesize that lower CH4 yields are the result of bacterial communities that ferment ingested feed to relatively less hydrogen, which results in less CH4 being formed.
BackgroundEnteric fermentation by farmed ruminant animals is a major source of methane and constitutes the second largest anthropogenic contributor to global warming. Reducing methane emissions from ruminants is needed to ensure sustainable animal production in the future. Methane yield varies naturally in sheep and is a heritable trait that can be used to select animals that yield less methane per unit of feed eaten. We previously demonstrated elevated expression of hydrogenotrophic methanogenesis pathway genes of methanogenic archaea in the rumens of high methane yield (HMY) sheep compared to their low methane yield (LMY) counterparts. Methane production in the rumen is strongly connected to microbial hydrogen production through fermentation processes. In this study, we investigate the contribution that rumen bacteria make to methane yield phenotypes in sheep.ResultsUsing deep sequence metagenome and metatranscriptome datasets in combination with 16S rRNA gene amplicon sequencing from HMY and LMY sheep, we show enrichment of lactate-producing Sharpea spp. in LMY sheep bacterial communities. Increased gene and transcript abundances for sugar import and utilisation and production of lactate, propionate and butyrate were also observed in LMY animals. Sharpea azabuensis and Megasphaera spp. act as important drivers of lactate production and utilisation according to phylogenetic analysis and read mappings.ConclusionsOur findings show that the rumen microbiome in LMY animals supports a rapid heterofermentative growth, leading to lactate production. We postulate that lactate is subsequently metabolised mainly to butyrate in LMY animals, producing 2 mol of hydrogen and 0.5 mol of methane per mol hexose, which represents 24 % less than the 0.66 mol of methane formed from the 2.66 mol of hydrogen produced if hexose fermentation was directly to acetate and butyrate. These findings are consistent with the theory that a smaller rumen size with a higher turnover rate, where rapid heterofermentative growth would be an advantage, results in lower hydrogen production and lower methane formation. Together with previous methanogen gene expression data, this builds a strong concept of how animal traits and microbial communities shape the methane phenotype in sheep.Electronic supplementary materialThe online version of this article (doi:10.1186/s40168-016-0201-2) contains supplementary material, which is available to authorized users.
Key messageGenomic prediction models for multi-year dry matter yield, via genotyping-by-sequencing in a composite training set, demonstrate potential for genetic gain improvement through within-half sibling family selection.AbstractPerennial ryegrass (Lolium perenne L.) is a key source of nutrition for ruminant livestock in temperate environments worldwide. Higher seasonal and annual yield of herbage dry matter (DMY) is a principal breeding objective but the historical realised rate of genetic gain for DMY is modest. Genomic selection was investigated as a tool to enhance the rate of genetic gain. Genotyping-by-sequencing (GBS) was undertaken in a multi-population (MP) training set of five populations, phenotyped as half-sibling (HS) families in five environments over 2 years for mean herbage accumulation (HA), a measure of DMY potential. GBS using the ApeKI enzyme yielded 1.02 million single-nucleotide polymorphism (SNP) markers from a training set of n = 517. MP-based genomic prediction models for HA were effective in all five populations, cross-validation-predictive ability (PA) ranging from 0.07 to 0.43, by trait and target population, and 0.40–0.52 for days-to-heading. Best linear unbiased predictor (BLUP)-based prediction methods, including GBLUP with either a standard or a recently developed (KGD) relatedness estimation, were marginally superior or equal to ridge regression and random forest computational approaches. PA was principally an outcome of SNP modelling genetic relationships between training and validation sets, which may limit application for long-term genomic selection, due to PA decay. However, simulation using data from the training experiment indicated a twofold increase in genetic gain for HA, when applying a prediction model with moderate PA in a single selection cycle, by combining among-HS family selection, based on phenotype, with within-HS family selection using genomic prediction.Electronic supplementary materialThe online version of this article (10.1007/s00122-017-3030-1) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.