The aim of the study was to compare the compositions of the fecal microbiotas of infants fed goat milk formula to those of infants fed cow milk formula or breast milk as the gold standard. Pyrosequencing of 16S rRNA gene sequences was used in the analysis of the microbiotas in stool samples collected from 90 Australian babies (30 in each group) at 2 months of age. Beta-diversity analysis of total microbiota sequences and Lachnospiraceae sequences revealed that they were more similar in breast milk/goat milk comparisons than in breast milk/cow milk comparisons. The Lachnospiraceae were mostly restricted to a single species (Ruminococcus gnavus) in breast milk-fed and goat milk-fed babies compared to a more diverse collection in cow milkfed babies. Bifidobacteriaceae were abundant in the microbiotas of infants in all three groups. Bifidobacterium longum, Bifidobacterium breve, and Bifidobacterium bifidum were the most commonly detected bifidobacterial species. A semiquantitative PCR method was devised to differentiate between B. longum subsp. longum and B. longum subsp. infantis and was used to test stool samples. B. longum subsp. infantis was seldom present in stools, even of breast milk-fed babies. The presence of B. bifidum in the stools of breast milk-fed infants at abundances greater than 10% of the total microbiota was associated with the highest total abundances of Bifidobacteriaceae. When Bifidobacteriaceae abundance was low, Lachnospiraceae abundances were greater. New information about the composition of the fecal microbiota when goat milk formula is used in infant nutrition was thus obtained. Natural microbial communities such as those that inhabit the human bowel carry out diverse and complex biochemical processes (1, 2). Investigations of factors involved in community structure and function require an understanding of the trophic requirements of the microbial members. Optimally, this requires laboratory experiments with cultured bacteria. However, the first step in ecological research is to determine the phylogenetic composition of the microbial community of interest.Most infant formulas are manufactured using cow milk as a base. Goat milk provides an alternative basis for the production of infant formula. Like cow milk, goat milk needs to be fortified to provide optimal nutrition for infants (3). The amount of lactose in cow and goat milk is about the same, but there are other compositional differences (4). Alpha-s1 casein is present in ruminant milk but not in breast milk. Compared to cow milk, goat milk contains much lower concentrations of alpha-s1 casein and higher concentrations of nucleotides and polyamines as well as some of the essential amino acids. Breast milk differs from ruminant milks in that sialylated and fucosylated oligosaccharides (human milk oligosaccharides [HMO]) are the third largest component (5). The HMO are utilized for growth by bifidobacteria, and their presence in breast milk is the likely explanation as to why there is generally a greater abundance of these bacteria in th...
Background: Repeated daily exposure of healthy human subjects to NO 2 induces an acute airway inflammatory response characterised by neutrophil influx in the bronchial mucosa Aims: To assess the expression of NF-kB, cytokines, and ICAM-1 in the bronchial epithelium. Methods: Twelve healthy, young non-smoking volunteers were exposed to 2 ppm of NO 2 /filtered air (four hours/day) for four successive days on separate occasions. Fibreoptic bronchoscopy was performed one hour after air and final NO 2 exposures. Bronchial biopsy specimens were immunostained for NF-kB, TNFa, eotaxin, Gro-a, GM-CSF, IL-5, -6, -8, -10, -13, and ICAM-1 and their expression was quantified using computerised image analysis. Results: Expression of IL-5, IL-10, IL-13, and ICAM-1 increased following NO 2 exposure. Conclusion: Upregulation of the Th2 cytokines suggests that repeated exposure to NO 2 has the potential to exert a ''pro-allergic'' effect on the bronchial epithelium. Upregulation of ICAM-1 highlights an underlying mechanism for leucocyte influx, and could also explain the predisposition to respiratory tract viral infections following NO 2 exposure since ICAM-1 is a major receptor for rhino and respiratory syncytial viruses.
Evidence of gut microbiota involvement in regulating glucose metabolism and type 2 diabetes mellitus (T2DM) progression is accumulating. The understanding of microbial dysbiosis and specific alterations of gut microbiota composition that occur during the early stages of glucose intolerance, unperturbed by anti-diabetic medications, is especially essential. Hence, this systematic review was conducted to summarise the existing evidence related to microbiota composition and diversity in individuals with prediabetes (preDM) and individuals newly diagnosed with T2DM (newDM) in comparison to individuals with normal glucose tolerance (nonDM). A systematic search of the PubMed, MEDLINE and CINAHL databases were conducted from inception to February 2021 supplemented with manual searches of the list of references. The primary keywords of “type 2 diabetes”, “prediabetes”, “newly-diagnosed” and “gut microbiota” were used. Observational studies that conducted analysis of the gut microbiota of respondents with preDM and newDM were included. The quality of the studies was assessed using the modified Newcastle-Ottawa scale by independent reviewers. A total of 18 studies (5,489 participants) were included. Low gut microbial diversity was generally observed in preDM and newDM when compared to nonDM. Differences in gut microbiota composition between the disease groups and nonDM were inconsistent across the included studies. Four out of the 18 studies found increased abundance of phylum Firmicutes along with decreased abundance of Bacteroidetes in newDM. At the genus/species levels, decreased abundance of Faecalibacterium prausnitzii, Roseburia, Dialister, Flavonifractor, Alistipes, Haemophilus and Akkermansia muciniphila and increased abundance of Lactobacillus, Streptococcus, Escherichia, Veillonella and Collinsella were observed in the disease groups in at least two studies. Lactobacillus was also found to positively correlate with fasting plasma glucose (FPG), HbA1c and/or homeostatic assessment of insulin resistance (HOMA-IR) in four studies. This renders a need for further investigations on the species/strain-specific role of endogenously present Lactobacillus in glucose regulation mechanism and T2DM disease progression. Differences in dietary intake caused significant variation in specific bacterial abundances. More studies are needed to establish more consistent associations, between clinical biomarkers or dietary intake and specific gut bacterial composition in prediabetes and early T2DM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.