The use of molecular markers has revolutionized the pace and precision of plant genetic analysis which in turn facilitated the implementation of molecular breeding of crops. The last three decades have seen tremendous advances in the evolution of marker systems and the respective detection platforms. Markers based on single nucleotide polymorphisms (SNPs) have rapidly gained the center stage of molecular genetics during the recent years due to their abundance in the genomes and their amenability for high-throughput detection formats and platforms. Computational approaches dominate SNP discovery methods due to the ever-increasing sequence information in public databases; however, complex genomes pose special challenges in the identification of informative SNPs warranting alternative strategies in those crops. Many genotyping platforms and chemistries have become available making the use of SNPs even more attractive and efficient. This paper provides a review of historical and current efforts in the development, validation, and application of SNP markers in QTL/gene discovery and plant breeding by discussing key experimental strategies and cases exemplifying their impact.
Simple sequence repeat (SSR) markers are widely used in many plant and animal genomes due to their abundance, hypervariability, and suitability for high-throughput analysis. Development of SSR markers using molecular methods is time consuming, laborious, and expensive. Use of computational approaches to mine ever-increasing sequences such as expressed sequence tags (ESTs) in public databases permits rapid and economical discovery of SSRs. Most of such efforts to date focused on mining SSRs from monocotyledonous ESTs. In this study, we have computationally mined and examined the abundance of SSRs in more than 1.54 million ESTs belonging to 55 dicotyledonous species. The frequency of ESTs containing SSRs among species ranged from 2.65% to 16.82%. Dinucleotide repeats were found to be the most abundant followed by tri- or mono-nucleotide repeats. The motifs A/T, AG/GA/CT/TC, and AAG/AGA/GAA/CTT/TTC/TCT were the predominant mono-, di-, and tri-nucleotide SSRs, respectively. Most of the mononucleotide SSRs contained 15-25 repeats, whereas the majority of the di- and tri-nucleotide SSRs contained 5-10 repeats. The comprehensive SSR survey data presented here demonstrates the potential of in silico mining of ESTs for rapid development of SSR markers for genetic analysis and applications in dicotyledonous crops.
Global food demand is expected to nearly double by 2050 due to an increase in the world's population. The Green Revolution has played a key role in the past century by increasing agricultural productivity worldwide, however, limited availability and continued depletion of natural resources such as arable land and water will continue to pose a serious challenge for global food security in the coming decades. High yielding varieties with proven tolerance to biotic and abiotic stresses, superior nutritional profiles, and the ability to adapt to the changing environment are needed for continued agricultural sustainability. The narrow genetic base of modern cultivars is becoming a major bottleneck for crop improvement efforts and, therefore, the use of crop wild relatives (CWRs) is a promising approach to enhance genetic diversity of cultivated crops. This article provides a review of the efforts to date on the exploration of CWRs as a source of tolerance to multiple biotic and abiotic stresses in four global crops of importance; maize, rice, cotton, and soybean. In addition to the overview of the repertoire and geographical spread of CWRs in each of the respective crops, we have provided a comprehensive discussion on the morphological and/or genetic basis of the traits along with some examples, when available, of the research in the transfer of traits from CWRs to cultivated varieties. The emergence of modern molecular and genomic technologies has not only accelerated the pace of dissecting the genetics underlying the traits found in CWRs, but also enabled rapid and efficient trait transfer and genome manipulation. The potential and promise of these technologies has also been highlighted in this review.
Genetic linkage maps play fundamental roles in understanding genome structure, explaining genome formation events during evolution, and discovering the genetic bases of important traits. A high-density cotton (Gossypium spp.) genetic map was developed using representative sets of simple sequence repeat (SSR) and the first public set of single nucleotide polymorphism (SNP) markers to genotype 186 recombinant inbred lines (RILs) derived from an interspecific cross between Gossypium hirsutum L. (TM-1) and G. barbadense L. (3-79). The genetic map comprised 2072 loci (1825 SSRs and 247 SNPs) and covered 3380 centiMorgan (cM) of the cotton genome (AD) with an average marker interval of 1.63 cM. The allotetraploid cotton genome produced equivalent recombination frequencies in its two subgenomes (At and Dt). Of the 2072 loci, 1138 (54.9%) were mapped to 13 At-subgenome chromosomes, covering 1726.8 cM (51.1%), and 934 (45.1%) mapped to 13 Dt-subgenome chromosomes, covering 1653.1 cM (48.9%). The genetically smallest homeologous chromosome pair was Chr. 04 (A04) and 22 (D04), and the largest was Chr. 05 (A05) and 19 (D05). Duplicate loci between and within homeologous chromosomes were identified that facilitate investigations of chromosome translocations. The map augments evidence of reciprocal rearrangement between ancestral forms of Chr. 02 and 03 versus segmental homeologs 14 and 17 as centromeric regions show homeologous between Chr. 02 (A02) and 17 (D02), as well as between Chr. 03 (A03) and 14 (D03). This research represents an important foundation for studies on polyploid cottons, including germplasm characterization, gene discovery, and genome sequence assembly.
Despite a growing number of reports indicating non-Mendelian inheritance of transgene expression in monocots, no detailed description of the structure and stability of the transgene exists for transformants generated by direct DNA-transfer techniques, making the cause for these observations difficult to determine. In this paper we describe the complex organization of Btf crylllA and bar transgenes in rice (Oryza safiva 1.) that displayed aberrant segregation in R, progeny. Silencing rather than rearrangement of the bar gene was implicated because the herbicide-sensitive R, plants had a DNA hybridization profile identical to that of the resistant R, parent and R, siblings. Cenomic DNA analysis revealed substantial methylation of the Ubil/bar sequences in silenced plants and, to a lesser degree, in herbicide-resistant plants, suggesting that the transgene locus was potentiated for silencing. Nuclease protection and nuclear run-on assays confirmed that silencing was due to transcriptional inactivation. Treatment of R, progeny of silenced plants with 5-azacytidine resulted in demethylation of the Ubil promoter and reactivation of bar gene expression, demonstrating a functional relationship for methylation in gene silencing. These findings indicate that methylation-based silencing may be frequent in cereals transformed by direct DNA protocols that insert multiple, often rearranged sequences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.