Since December 2019, the coronavirus disease (COVID-19) outbreak has caused many death cases and affected all sectors of human life. With gradual progression of time, COVID-19 was declared by the world health organization (WHO) as an outbreak, which has imposed a heavy burden on almost all countries, especially ones with weaker health systems and ones with slow responses. In the field of healthcare, deep learning has been implemented in many applications, e.g., diabetic retinopathy detection, lung nodule classification, fetal localization, and thyroid diagnosis. Numerous sources of medical images (e.g., X-ray, CT, and MRI) make deep learning a great technique to combat the COVID-19 outbreak. Motivated by this fact, a large number of research works have been proposed and developed for the initial months of 2020. In this paper, we first focus on summarizing the state-of-the-art research works related to deep learning applications for COVID-19 medical image processing. Then, we provide an overview of deep learning and its applications to healthcare found in the last decade. Next, three use cases in China, Korea, and Canada are also presented to show deep learning applications for COVID-19 medical image processing. Finally, we discuss several challenges and issues related to deep learning implementations for COVID-19 medical image processing, which are expected to drive further studies in controlling the outbreak and controlling the crisis, which results in smart healthy cities.
The enormous popularity of the internet across all spheres of human life has introduced various risks of malicious attacks in the network. The activities performed over the network could be effortlessly proliferated, which has led to the emergence of intrusion detection systems. The patterns of the attacks are also dynamic, which necessitates efficient classification and prediction of cyber attacks. In this paper we propose a hybrid principal component analysis (PCA)-firefly based machine learning model to classify intrusion detection system (IDS) datasets. The dataset used in the study is collected from Kaggle. The model first performs One-Hot encoding for the transformation of the IDS datasets. The hybrid PCA-firefly algorithm is then used for dimensionality reduction. The XGBoost algorithm is implemented on the reduced dataset for classification. A comprehensive evaluation of the model is conducted with the state of the art machine learning approaches to justify the superiority of our proposed approach. The experimental results confirm the fact that the proposed model performs better than the existing machine learning models.
Massive Open Online Courses (MOOC) has gained a huge popularity amongst the current generation students mainly because of its open nature and its ubiquity. MOOC made it possible for thousands of aspiring learners to learn from their favorite Universities. Though this online learning platform has its advantages, many studies have proved that these massive courses are suffering from tremendous rates in students’ dropouts. This study surveys the major causes of dropouts and would try to link the MOOC failures with the learners’ stress levels. The study also proposes a framework which could be used while designing MOOC courses and will help MOOC providers to personalize the content delivery according to the online learners’ stress levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.