In the field of mobile robot decision making and control, path planning is an essential element as it defines the performance of the design. It is one of the hot topics in artificial intelligence and researchers pay more attention to develop an efficient model. The key requirements that must be considered while designing a navigational system for mobile robots are origin point, obstacles, destination point, path planning, and realistic decision mechanism. However, conventional systems have limitations as slow response, long planning, large turns, and unsafe factors. Aiming at the problems, this research work presents a hybrid optimized path planning model for a mobile robot. Improved particle swarm optimization and Modified Whale optimization models are incorporated as a hybrid multi-objective approach to obtain the shortest, smoothest, and safest path for a mobile robot. Experimental results demonstrate that the proposed hybrid optimization model is suitable for mobile robot navigation for dynamic environments by obtaining a shorter, smoother, and safer path than existing algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.